An International Symposium hosted by: The International Sepsis Forum

Program & Abstract Book

www.sepsisconference.com

An International Symposium hosted by: The International Sepsis Forum
EARLY PATIENT MANAGEMENT IN SEPSIS

PCT specifically increases during severe bacterial infections and sepsis, and is a useful biomarker for:

- clinical diagnosis → differentiation between bacterial and non-bacterial infections
- prognosis → severity assessment
- antibiotic stewardship → guidance on duration of antibiotic therapy

www.biomerieux.com
Welcome from Konrad Reinhart

Welcome to Paris and to the fourth Sepsis Symposium hosted by the International Sepsis Forum (ISF).

The Symposium is designed to encourage debate and learning within this challenging subject. This years’ program supports the ISF’s vision and mission statements by discussing the global burden of sepsis, how and why sepsis kills, the host response, how we can help the host fight back and how we can refine the treatment of sepsis. The Symposium will also provide a review of clinical trials – past and ongoing.

Our expert panel of internationally renowned speakers are leaders from the fields of critical care, emergency medicine, infectious diseases, internal medicine and surgery. Their collective knowledge of caring for patients with severe sepsis and shock will be shared with the Symposium participants.

Sessions are plenary and roundtable, with guided poster walks throughout the Symposium. The four best abstracts will be presented on Thursday 2 September in an oral session. We hope that you enjoy the Symposium and I wish you all an informative and socially rich experience from which you will take home the information provided and bring as much as possible into your practice so that we all contribute to a better treatment of sepsis.

Konrad Reinhart
Chair, ISF
The International Sepsis Forum: Background

Improving Sepsis Outcomes
The International Sepsis Forum (ISF) is a unique collaborative effort between industry and academia. It is the first initiative to focus solely on management of patients with severe sepsis. While sepsis and its sequelae are still associated with high morbidity and mortality rates, new data on patient management are emerging that may ultimately significantly improve the current situation. Such findings need to be evaluated and incorporated, when appropriate, into existing treatment protocols. Headed by a Council of international experts and opinion leaders, the ISF is focused exclusively on improving the management of sepsis and, in particular, septic shock by developing an international consensus on the latest understanding of key scientific and clinical issues, and disseminating emerging practice guidelines to researchers, intensivists, and other critical care professionals worldwide.

Vision, Mission and Core Values
The vision of the International Sepsis Forum is to reduce the global toll of morbidity and mortality from sepsis.

The mission of the ISF is to improve the care of critically care patients with sepsis by:
- Promoting an improved understanding of the basic biology and pathology of sepsis
- Enhancing the understanding of the epidemiology of sepsis
- Improving the design and conduct of clinical research to improve the management of septic patients
- Educating health professionals in the optimal management of patients with sepsis
- Raising the profile of sepsis as a global health challenge with the public, with healthcare practitioners, with industry, and with global health agencies

Core Values of the ISF
Integrity, responsibility and accountability to ourselves and to the patients and communities we serve.
Respectful, collegiate and transparent relationships within our group, with the scientific and clinical communities and with our academic and industry collaborators.
Courage, compassion, justice and innovative thought in combating the global challenge of severe sepsis.

Contact details:
Executive Director – Elaine Rinicker
Telephone: +1 813-235-9813 Fax: +1 813-235-9014
Postal Address: 7024 Palmetto Pines Lane, Land O’ Lakes, FL 34637, USA
E-Mail: elaine@sepsisforum.org

International Sepsis Forum is a Charity registered in England and Wales Number 1089944
The International Sepsis Forum Inc is currently applying for non-profit status in the USA.

Web Site: www.sepsisforum.org

www.sepsisforum.org is a resource for all to use. The ISF will be adding a new feature which will include a report and web cast from Sepsis 2010.

The ISF web site also contains Understanding Sepsis is a booklet written for family members who are trying to understand this common and devastating disease. The booklet explains sepsis, severe sepsis and septic shock and various treatments and management techniques that may be used by physicians and other health care professionals in treating this disease.

This version of the booklet is available in English, Spanish, Portuguese, Dutch, Italian, Japanese and French.
Council Members

The ISF takes its direction from a council chaired by Professor Konrad Reinhart. This prestigious group of international experts in sepsis meets regularly to identify educational needs and develop ISF activities. A group of Scientific Advisors appointed by the Council also participates in program activities, providing vital input to key clinical and research issues.

Konrad Reinhart ISF Chair
Vice Dean of Clinic for Anaesthesiology and Intensive Care, Jena, Germany

Edward Abraham
Professor and Chair of the Department of Medicine, the University of Alabama, Birmingham, USA

Derek Angus
University of Pittsburgh, Critical Care Medicine, Crisma Laboratory, Pittsburgh, USA

Gordon Bernard
Melinda Owen Bass Professor of Medicine, and Associate Vice Chancellor for Research at Vanderbilt University School of Medicine, USA

Thierry Calandra
Professor, Division of Infectious Diseases, Department of Internal Medicine Centre, Hospitalier Universitaire Vaudois, Lausanne, Switzerland

R. Phillip Dellinger
Professor of Medicine at Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, USA

Mitchell Fink
Visiting Professor in the Department of Surgery at the David Geffen School of Medicine at UCLA, University of California in Los Angeles, USA

Simon Finfer
Professor in the Faculty of Medicine of the University of Sydney and at The George Institute for International Health in Sydney, Australia

Stephen F. Lowry
Professor and Chairman Department of Surgery at the University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School and Senior Associate Dean for Education New Brunswick, USA

John Marshall
Professor of Surgery at St Michael's Hospital, Toronto, Canada

Jean-Paul Mira
Dean of Cochin Port-Royal University and the Professor of Critical Care Medicine; Chairman of the Department of Critical Care Medicine at Cochin-St Vincent de Paul University Hospital Paris, France

Steven Opal ISF Treasurer
Professor of Medicine, Brown Medical School, Providence, Rhode Island, USA

Mervyn Singer
Professor of Intensive Care Medicine at University College London, UK

Tom van der Poll
Professor of Medicine at the University of Amsterdam, The Netherlands

Jean-Louis Vincent
Professor of Intensive Care at the University of Brussels and Head of the Department of Intensive Care at the Erasme University Hospital in Brussels, Belgium

Global Sepsis Alliance - GSA

The World Federation of Societies of Intensive and Critical Care Medicine (WFSICCM), the World Federation of Pediatric Intensive and Critical Care Societies (WFPICCS), the International Sepsis Forum and the Sepsis Alliance (SA), have recognized the need to elevate awareness and understanding of sepsis and have come together to form the Global Sepsis Alliance (GSA). Many leading organizations have joined the GSA and will support its efforts creating a multidisciplinary organization.

The objective of the GSA is to rally the global sepsis community in an effort to elevate public, philanthropic and governmental awareness, understanding and support of sepsis and to accelerate collaboration among researchers, clinicians, associated working groups and those dedicated to supporting them.

For more information on the GSA please visit the web site: www.globalsepsisalliance.org
General Information

Badges
Name badges will be issued to all participants on arrival at Registration. Participants are kindly requested to wear their badge at all times for security. Access to all scientific events, catering and Exhibition areas will only be possible with your own name badge. Replacement name badges may be purchased from the Registration Desk.

Catering
Morning and Afternoon Breaks and Lunch: participants’ teas and coffee after lunch will be served from the various service points within the Exhibition area. Please take time to visit the Exhibitors during the breaks. They will be pleased to see you. Participants lunch will be served in the Espace Congrès. This building is two minutes walk from the CIS building and staff will help you find your way.

Certificates of Attendance
Each pre-registered delegate will receive a Certificate of Attendance with their delegate materials on arrival. This Conference operates on a transparency basis so that participants declare openly to their accrediting organisation how much of the Conference they attended.

Checking out of Accommodation
Please ensure that you check-out of your accommodation by the required time (check with your hotel Reception as times vary). Please ensure that you settle any hotel room extras (telephone, meals etc) on departure.

Cloakroom
A cloakroom is provided by the venue. This area may not be manned at all times. All bags and belongings are placed here at the owner’s risk.

Exhibition
We have two exhibits at this conference and we encourage all participants to visit the displays. For information about our Exhibitors, please see page 35.

Feedback Forms
It is important for Organizers to have feedback to help direct future events. Please take time to fill in your Feedback Form and hand it in at the Registration Desk before departing from the Conference. Your view is valued.

Instructions to Poster Presenters
Please note the following important details:

A listing of all Posters by title is given on pages 19–21.

Posters should be fixed to the poster boards using magnets, poster tape, or Blue Tac during the after noon of Wednesday 1 September, before the start of the opening session or during the break at 15:00 – 15:30.

Each poster has been allocated a board on which to be displayed, with a poster number. This number cannot be moved or the poster location swapped for any other. Posters have been arranged generally by theme.

All posters must be placed on the correct board no later than 15:30 hours on 1 September, be displayed for the duration of the Conference and removed at the end of the Conference.

Authors are invited to stand by their posters during the Welcome Reception and Poster Walks on Wednesday 1 September following on from the end of the program, to meet and discuss the poster with other participants. The posters will be reviewed by the Sepsis 2010 Program Committee during a series of Poster Walks.

Please Remember To Take Your Poster Home With You!

Liability
Neither the International Sepsis Forum, International Sepsis Forum Ltd, Index Communications Meeting Services nor the Institut Pasteur is able to take responsibility whatsoever for injury or damage to persons or property during the Conference. Please take care of yourself and your belongings.

Messages
The telephone number for the venue is + 33 (0) 1 40 61 34 08.

It may take time for messages to reach participants, but every effort will be made.
Mobile Phones
We appreciate that all Conference participants need to be available for calls, but the Organizers ask that all mobile phones are switched off or to mute mode in all sessions. We would like to make a polite request that any calls be made or taken in the foyer areas or outside the Conference sessions to avoid disruption to this professional meeting.

Poster Awards
Four Posters have been selected to be Discussed Posters and this means that they also have short oral presentations within the program. Please refer to page 19 for the Conference program.

Poster Awards are kindly supported by an educational grant from Merck & Co.

Publication of Abstracts
ISF has published all abstracts accepted for Sepsis 2010 in the Program Book. In addition a selection of abstracts has also been published as a supplement to the Critical Care journal. Abstracts published in Critical Care are under the editorial control of the journal and not ISF.

Program Books
If stock allows, spare copies of the Program Book will be available to buy from the Registration Desk at the end of the Conference. If you lose your Book and need a replacement you will need to pay 30 Euros.

Registration Desk
The Registration Desk will be situated adjacent to the Exhibition area and will be open during the following hours:

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>1 September</td>
<td>11:00 – 19:00</td>
</tr>
<tr>
<td>Thursday</td>
<td>2 September</td>
<td>07:30 – 18:00</td>
</tr>
<tr>
<td>Friday</td>
<td>3 September</td>
<td>07:30 – 14:00</td>
</tr>
</tbody>
</table>

Smoking
Please note that this is a No Smoking Conference.

Social Program
Wednesday 1 September
Welcome Reception 18:00 – 19:30 hours in the Exhibition area
A Welcome Reception will be held in the Exhibition area immediately after the last session of the afternoon’s program. Please ensure that you are wearing your name badge for this event. This will be an informal opportunity for delegates to meet, relax and orientate themselves ready for the next few days, as well as viewing the Poster Exhibition.

Drinks and nibbles will be served.

Thursday 2 September
Gala Dinner 19:30 hours at Bel Canto, Neuilly sur Seine
At the Bel Canto the waiters are actually students of the famous Paris Conservatoire and they burst into songs composed by geniuses like Mozart, Puccini, Verdi etc. The cuisine is typically European and the wine is good. All in all, this promises to be an atmospheric and special evening. Following a drinks reception, a 3 course dinner will be served.

Tickets should have been prebooked. If you have not already booked and would like to attend, please contact the Registration team for availability.

Coach transport is provided by the Conference – please refer to your ticket for details.
Please ensure that you bring your ticket with you.

Dress code: informal.

Venue (of the Conference)
Institut Pasteur
25 – 28 rue du Docteur Roux
75724 Paris CEDEX 15 – France
Tel : +33 (0) 1 45 68 80 00
Fax : +33 (0) 1 43 06 98 35
Sepsis 2010: Scientific Program

Sepsis 2010 is hosted by the International Sepsis Forum

The scientific program is endorsed by

The Australian and New Zealand Intensive Care Society (ANZICS)

The Société de Réanimation de Langue Françoise (SRLF)

Program co-chairs Simon Finfer, Sydney, Australia & Jean-Paul Mira, Paris, France

<table>
<thead>
<tr>
<th>Wednesday 1 September</th>
<th>Abstract no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00 – 13:15</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td>Konrad Reinhart, Chair of the ISF, Jena, Germany</td>
<td></td>
</tr>
<tr>
<td>13:15 – 15:00</td>
<td>Session I The Global Burden of Sepsis</td>
</tr>
<tr>
<td>Chairs: John Marshall, Toronto, Canada and Konrad Reinhart, Jena, Germany</td>
<td></td>
</tr>
<tr>
<td>13:15 – 13:40</td>
<td>The burden of sepsis in the developed world</td>
</tr>
<tr>
<td>Derek Angus, Pittsburgh, USA</td>
<td></td>
</tr>
<tr>
<td>13:40 – 14:05</td>
<td>The burden of sepsis in the developing world</td>
</tr>
<tr>
<td>Nick White, Bangkok, Thailand</td>
<td></td>
</tr>
<tr>
<td>14:05 – 14:25</td>
<td>Sepsis in China: What is the difference between China and other countries</td>
</tr>
<tr>
<td>Du Bin, Beijing, China</td>
<td></td>
</tr>
<tr>
<td>14:25 – 14:45</td>
<td>Sepsis in Africa</td>
</tr>
<tr>
<td>Kath Maitland, Kalifi, Kenya</td>
<td></td>
</tr>
<tr>
<td>14:45 – 15:00</td>
<td>Discussion: What can a Global Sepsis Alliance achieve?</td>
</tr>
<tr>
<td>15:00 – 15:30</td>
<td>Break</td>
</tr>
<tr>
<td>15:30 – 16:50</td>
<td>Session II How and Why Sepsis Kills</td>
</tr>
<tr>
<td>Chairs: Tom van der Poll, Amsterdam, The Netherlands and Derek Angus, Pittsburgh, USA</td>
<td></td>
</tr>
<tr>
<td>15:30 – 15:50</td>
<td>Genetic determinants in sepsis</td>
</tr>
<tr>
<td>Jean-Paul Mira, Paris, France</td>
<td></td>
</tr>
<tr>
<td>15:50 – 16:10</td>
<td>Quorum sensing and other cell signaling mechanisms between bacterial pathogen</td>
</tr>
<tr>
<td>Steven Opal, Pawtucket, USA</td>
<td></td>
</tr>
<tr>
<td>16:10 – 16:30</td>
<td>How bacteria evade innate immunity</td>
</tr>
<tr>
<td>Jos van Stripp, Utrecht, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>16:30 – 16:50</td>
<td>Extracellular histones as mediators of death</td>
</tr>
<tr>
<td>Thierry Roger, Lausanne, Switzerland</td>
<td></td>
</tr>
<tr>
<td>16:50 – 17:50</td>
<td>Session II, Keynote Lecture: Introduced by Jean-Paul Mira, Paris, France</td>
</tr>
<tr>
<td>Mechanisms of meningeal invasion during meningococcemia</td>
<td></td>
</tr>
<tr>
<td>Xavier Nassif, Paris, France</td>
<td></td>
</tr>
<tr>
<td>18:00 – 19:30</td>
<td>Welcome Reception and Posters</td>
</tr>
<tr>
<td>Time</td>
<td>Session/Abstract</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>08:00 – 09:30</td>
<td>Pro- or Anti-Inflammatory Treatment: Which way to go in your Patient with Severe Sepsis</td>
</tr>
<tr>
<td></td>
<td>Chair: Jean-Paul Mira, Paris, France</td>
</tr>
<tr>
<td></td>
<td>A bioMérieux Sponsored Session</td>
</tr>
<tr>
<td>08:00 – 08:30</td>
<td>Anti-inflammatory approaches to severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>08:30 – 09:00</td>
<td>Immune stimulation in severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Richard Hotchkiss, St Louis, USA</td>
</tr>
<tr>
<td>09:00 – 09:30</td>
<td>Individualized treatment for severe sepsis, are biomarkers ready for prime time?</td>
</tr>
<tr>
<td></td>
<td>John Marshall, Toronto, Canada</td>
</tr>
<tr>
<td>09:30 – 10:50</td>
<td>Session III The Host Response</td>
</tr>
<tr>
<td></td>
<td>Chairs: Jean-Paul Mira, Paris, France and Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>09:30 – 09:50</td>
<td>Early recognition and initial signalling</td>
</tr>
<tr>
<td></td>
<td>Tom van der Poll, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>09:50 – 10:00</td>
<td>The hormonal-bioenergetic-metabolic response</td>
</tr>
<tr>
<td></td>
<td>Mervyn Singer, London, UK</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Dendritic cells</td>
</tr>
<tr>
<td></td>
<td>Jean-Daniel Chiche, Paris, France</td>
</tr>
<tr>
<td>10:20 – 10:40</td>
<td>The later phase – Immune paresis</td>
</tr>
<tr>
<td></td>
<td>Richard Hotchkiss, St Louis, USA</td>
</tr>
<tr>
<td>10:40 – 10:50</td>
<td>Discussion</td>
</tr>
<tr>
<td>10:50 – 11:15</td>
<td>Break</td>
</tr>
<tr>
<td>11:15 – 12:45</td>
<td>Session IV How to Help the Host Fight Back</td>
</tr>
<tr>
<td></td>
<td>Chairs: Simon Finfer, Sydney, Australia and Mervyn Singer, London, UK</td>
</tr>
<tr>
<td>11:15 – 11:35</td>
<td>Fluid resuscitation and cardiovascular support</td>
</tr>
<tr>
<td></td>
<td>Jean-Louis Vincent, Brussels, Belgium</td>
</tr>
<tr>
<td>11:35 – 11:55</td>
<td>Renal support and replacement in sepsis</td>
</tr>
<tr>
<td></td>
<td>Christophe Vinsonneau, Paris, France</td>
</tr>
<tr>
<td>11:55 – 12:15</td>
<td>The gut and nutrition in sepsis</td>
</tr>
<tr>
<td></td>
<td>John Marshall, Toronto, Canada</td>
</tr>
<tr>
<td>12:15 – 12:35</td>
<td>Respiratory support in ARDS and sepsis</td>
</tr>
<tr>
<td></td>
<td>Gordon Bernard, Nashville, USA</td>
</tr>
<tr>
<td>12:35 – 12:45</td>
<td>Discussion: Why is the case fatality rate for severe sepsis decreasing?</td>
</tr>
<tr>
<td>12:45 – 14:15</td>
<td>Lunch and Posters</td>
</tr>
<tr>
<td>14:15 – 15:30</td>
<td>Session V Refining the Treatment of Sepsis</td>
</tr>
<tr>
<td></td>
<td>Chairs: Jean-Louis Vincent, Brussels, Belgium and Gordon Bernard, Nashville, USA</td>
</tr>
<tr>
<td>14:15 – 14:35</td>
<td>Biomarker guided detection and treatment of sepsis</td>
</tr>
<tr>
<td></td>
<td>Konrad Reinhart, Jena, Germany</td>
</tr>
<tr>
<td>14:35 – 14:55</td>
<td>Targeting coagulation and endothelium in sepsis</td>
</tr>
<tr>
<td></td>
<td>Jean-François Dhainaut, Paris, France</td>
</tr>
<tr>
<td>Time</td>
<td>Session/Activity</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>14:55 – 15:15</td>
<td>Glucose control and other holistic treatments</td>
</tr>
<tr>
<td></td>
<td>Simon Finfer, Sydney, Australia</td>
</tr>
<tr>
<td>15:15 – 15:25</td>
<td>Discussion: Which are the most promising new treatments for sepsis?</td>
</tr>
<tr>
<td>15:25 – 15:45</td>
<td>Break</td>
</tr>
<tr>
<td>15:45 – 16:45</td>
<td>Session VI</td>
</tr>
<tr>
<td></td>
<td>Sepsis 2010 Best Abstract Presentations</td>
</tr>
<tr>
<td></td>
<td>Keynote Lecture: Introduced by Jean-Paul Mira, Paris, France</td>
</tr>
<tr>
<td></td>
<td>Apoptosis in sepsis- only signature of severity or therapeutic targets?</td>
</tr>
<tr>
<td></td>
<td>Richard Hotchkiss, St Louis, USA</td>
</tr>
<tr>
<td>16:45 – 17:45</td>
<td>Session VII</td>
</tr>
<tr>
<td></td>
<td>Clinical Trials in Sepsis: Lessons Learnt from the Past and Ongoing Trials</td>
</tr>
<tr>
<td></td>
<td>Keynote Lecture: Introduced by Simon Finfer, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Pragmatic trials: a bold new paradigm for sepsis research</td>
</tr>
<tr>
<td></td>
<td>Stephen MacMahon, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Roundtable: Why do so many sepsis trials fail?</td>
</tr>
<tr>
<td>08:00 – 10:00</td>
<td>Session VII</td>
</tr>
<tr>
<td></td>
<td>Clinical Trials in Sepsis: Lessons Learnt from the Past and Ongoing Trials</td>
</tr>
<tr>
<td></td>
<td>Keynote Lecture: Introduced by Simon Finfer, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Pragmatic trials: a bold new paradigm for sepsis research</td>
</tr>
<tr>
<td></td>
<td>Stephen MacMahon, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Roundtable: Why do so many sepsis trials fail?</td>
</tr>
<tr>
<td>08:00 – 10:00</td>
<td>Session VII</td>
</tr>
<tr>
<td></td>
<td>Clinical Trials in Sepsis: Lessons Learnt from the Past and Ongoing Trials</td>
</tr>
<tr>
<td></td>
<td>Keynote Lecture: Introduced by Simon Finfer, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Pragmatic trials: a bold new paradigm for sepsis research</td>
</tr>
<tr>
<td></td>
<td>Stephen MacMahon, Sydney, Australia</td>
</tr>
<tr>
<td></td>
<td>Roundtable: Why do so many sepsis trials fail?</td>
</tr>
<tr>
<td>08:00 – 08:45</td>
<td>Keynote Lecture:</td>
</tr>
<tr>
<td></td>
<td>Simon Finfer, Sydney, Australia</td>
</tr>
<tr>
<td>08:45 – 09:15</td>
<td>Roundtable:</td>
</tr>
<tr>
<td></td>
<td>Why do so many sepsis trials fail?</td>
</tr>
<tr>
<td>09:15 – 10:00</td>
<td>Session VIII Part 1 – Update on Ongoing Clinical Trials</td>
</tr>
<tr>
<td></td>
<td>Chairs: Mervyn Singer, London, UK and Derek Angus, Pittsburgh, USA</td>
</tr>
<tr>
<td></td>
<td>Use of oral lactoferrin as a preventive strategy for severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>09:15 – 10:00</td>
<td>Session VIII Part 1 – Update on Ongoing Clinical Trials</td>
</tr>
<tr>
<td></td>
<td>Chairs: Mervyn Singer, London, UK and Derek Angus, Pittsburgh, USA</td>
</tr>
<tr>
<td></td>
<td>Use of oral lactoferrin as a preventive strategy for severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>09:15 – 10:00</td>
<td>Session VIII Part 1 – Update on Ongoing Clinical Trials</td>
</tr>
<tr>
<td></td>
<td>Chairs: Mervyn Singer, London, UK and Derek Angus, Pittsburgh, USA</td>
</tr>
<tr>
<td></td>
<td>Use of oral lactoferrin as a preventive strategy for severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>10:00 – 10:30</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 – 12:30</td>
<td>Session VIII Part 2 – Update on Ongoing Clinical Trials</td>
</tr>
<tr>
<td></td>
<td>Chairs: Simon Finfer, Sydney, Australia and John Marshall, Toronto, Canada</td>
</tr>
<tr>
<td></td>
<td>ACCESS – Eritoran, a TLR4 antagonist in severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>10:30 – 12:30</td>
<td>Session VIII Part 2 – Update on Ongoing Clinical Trials</td>
</tr>
<tr>
<td></td>
<td>Chairs: Simon Finfer, Sydney, Australia and John Marshall, Toronto, Canada</td>
</tr>
<tr>
<td></td>
<td>ACCESS – Eritoran, a TLR4 antagonist in severe sepsis</td>
</tr>
<tr>
<td></td>
<td>Steven Opal, Pawtucket, USA</td>
</tr>
<tr>
<td>11:15 – 11:30</td>
<td>Lipopolysaccharide removal</td>
</tr>
<tr>
<td>11:30 – 11:45</td>
<td>European revival of albumin in sepsis: EARSS and ALBIOS</td>
</tr>
<tr>
<td>11:45 – 12:00</td>
<td>Fluid resuscitation in Africa</td>
</tr>
<tr>
<td>12:00 – 12:15</td>
<td>InFACT – did we learn anything from H1N1?</td>
</tr>
<tr>
<td>12:15 – 12:30</td>
<td>Closing Remarks</td>
</tr>
</tbody>
</table>
S01
The burden of sepsis in the developed world
Derek Angus
Pittsburgh, USA

In recent years, a number of large scale studies have estimated the incidence or prevalence of severe sepsis in many industrialized nations.

Most of the studies are focused on patients admitted to an ICU, and most report that 5-15% of ICU patients either have severe sepsis on admission or develop severe sepsis during admission. However, the number of ICU beds per population varies widely across countries, and thus the number of cases per population varies widely. Whether this wide variation represents true differences in severe sepsis or, rather, represents the fact that many countries provide care for severe sepsis at variable rates outside the ICU is unclear. Severe sepsis is defined as infection complicated by acute organ dysfunction, but many measures of acute organ dysfunction require provision of life support (e.g., acute respiratory failure is often defined as requirement for mechanical ventilation). Thus, the number of ventilators and number of staffed ICU beds will affect the number of cases that meet severe sepsis criteria. This interaction highlights both methodologic challenges when measuring the epidemiology of severe sepsis and potential public health challenges. Specifically, one wonders about the fate of patients who develop severe infections in countries with limited access to ICU beds. In my talk, I will discuss these findings and their implications. With these caveats in mind, I will also review the use of healthcare resources for severe sepsis and patient outcome.

S02
The burden of sepsis in the developing world
Nick J White
Bangkok, Thailand

Over 9.5 million people die each year because of infectious diseases – nearly all of whom live in developing countries. The majority of these preventable deaths are caused by bacterial infections, which occur in African or Asian children under 5 years of age. Accurate cause specific data are notoriously difficult to obtain, but neonatal sepsis, pneumonia and diarrhea are the main lethal diseases, and Enterobacteriaceae (neonatal sepsis), *Streptococcus pneumoniae*, *Staphylococcus aureus*, and non-typhoidal Salmonellae are the main pathogens. Pyogenic bacterial infections also contribute significantly to the mortalities attributable to malaria, HIV-AIDS, and measles. The introduction of vaccines for *Haemophilus influenzae B* and recently for *S.pneumoniae* (some serotypes) has reduced mortality from these infections, and oral rehydration solutions have provided dramatic benefit in watery diarrheas, but delays in receiving appropriate antibiotics account for the majority of preventable deaths.

Delays in recognizing the severity of illness, in referral to health facilities, and in provision of appropriate treatment all contribute to a fatal outcome. Antibiotics are freely available in developing countries, and resistance is widespread, but its contribution currently to mortality is uncertain, although it is likely to increase.

The lack of microbiology facilities in much of the tropics contributes to these many epidemiological uncertainties. Simple measures to ensure sick patients receive appropriate antibiotics as soon as possible would have a major impact on the mortality of bacterial sepsis.

S03
Sepsis in China: what is the difference between China and other countries
Du Bin
Beijing, China

Severe sepsis/septic shock remains the major cause of death among critically ill patients. The high incidence and mortality/morbidity have led to the development of the international sepsis guideline, first published in 2004 and revised in 2008. However, limited data exist with regards to the epidemiology and management of sepsis in mainland China.

The only published epidemiology of severe sepsis showed that, in 10 surgical ICUs in China, severe sepsis accounted for 8.7% (318/3665), with 28-day mortality of 44.7%. A recent observational study in 1297 patients who stayed in any of 22 ICUs in China found that, severe sepsis/septic shock was diagnosed in 484 patients (37.3%), with hospital mortality of 33.5%. Severe sepsis/septic shock was an independent predictor of mortality (OR 1.430, 95%CI 1.011 – 2.023, p = 0.043).

Significantly regional variation in the management of severe sepsis/septic shock was reported worldwide. A survey was conducted in 2007 among 196 Chinese intensivists to describe self-reported practice in the management of early septic shock, and to compare the response with those of Canadian intensivists reported in an earlier study. Compared with Canadians, Chinese intensivists reported to use components of sepsis resuscitation bundle more frequently, including CVP (87.2% vs. 78.7%, p = 0.0240), and both ScvO2 (33.7% vs. 19.4%, p = 0.0012) and SvO2 (23.0% vs. 14.9%, p = 0.0374). In addition, Chinese intensivists reported to use colloid more commonly than Canadian intensivists.

In a cross-sectional study in 391 ICUs across 25 countries to describe the practice and influencing factors of fluid challenge, the authors observed that, compared to Canada, odds ratios for the prescription of crystalloid, colloid, and blood products in China were 0.46 (95%CI 0.30-0.69), 1.72 (1.20-2.47) and 3.33 (2.02-5.50), respectively. A multinational descriptive study involving 1285 patients with severe sepsis/septic shock in 150 ICUs in 16 Asian countries was performed to assess the compliance to sepsis bundles and its association with hospital mortality. In the middle-income countries among which China is one of them, the compliance to sepsis bundle was only 6.9% (vs. 10.0% in high-income countries), corresponding to a significant higher mortality rate (50.6% vs. 38.7%).

All the above data showed that, severe sepsis/septic shock is very common among critically ill patients in China, with a relatively poor outcome, which might be improved in the future.

S04
Sepsis in Africa
Kath Maitland
Kalifi, Kenya

The cornerstones of the Surviving Sepsis Campaign are early identification of sepsis and prompt implementation of evidence-based treatment strategies. These present important yet obtainable goals for resource-rich countries. In malaria-endemic African in the current context of acute and emergency paediatric care they remain only a notional possibility.

Several factors including limited pre referral emergency care, low priority given to triage, poor evidence base for current guidelines and poor diagnostic facilities contribute to the current status. Even the most simple emergency interventions such as fluid resuscitation, thresholds for hypoglycaemia correction, transfusion thresholds and who and what antimicrobials to administer have not been subjected to rigorous evaluation.

The term ‘sepsis’, which broadly implies a sepsis-like syndrome, is not even mentioned in the paediatric hospital management guidelines. Instead,
probably for historical, programmatic reasons, management treatment strategies are largely syndromic so treatment of suspected bacterial infection is covered separately in vertical and non-overlapping management guidelines. Practically, this presents challenges for bedside management as many children present with clinical features consistent with multiple syndromes.

Since between a quarter and a half of children present to hospital in their final illness the poor evidence base and limited operational use of triage and emergency care results in a high hidden morbidity and mortality. This therefore contributes importantly to overall under-five mortality. If not adequately addressed, the poor standard of emergency care may be an obstacle to achievement of the Millennium Development Goal No.4 on child survival in Africa.

Whether given as single or as a complex intervention there is an urgent need for scientific evaluation and advocacy to ensure that both the evidence base is more robust for these simple interventions and that implementation research drives future practice in order to improve child survival.

Session II: How and Why Sepsis Kills

S05 Genetic determinants in sepsis

Jean-Paul Mira
Paris, France

Severe sepsis continues to be a major and increasing health care burden worldwide. Despite aggressive organ support and optimal microbial therapy, sepsis remains the commonest cause of death in ICU with an overall mortality rate of 25-40%. The relative failure of conventional therapeutic strategies has stimulated a major interest in the development of new research axes, such as identification of genetic factors that influence sepsis susceptibility, therapeutic response, or outcome.

Genetically-determined differences in host immune responses against pathogens might explain why some people get sick and die when they encounter a pathogen whereas others stay perfectly healthy. Explosion of knowledge both in human genomics and in host inflammatory response explains the increasing interest in immunogenetics over the last years. Indeed, twin and adoptee studies have suggested more than 20 years ago, that host genetic factors are major determinants of susceptibility to infectious diseases in humans. Recently, candidate gene studies and human genome wide analysis have been used to identify infectious diseases susceptibility and resistance genes. Rarely, a single gene defect has been directly related to devastating consequences such as interferon-gamma receptor mutations leading to fatal infections with ubiquitous mycobacteria. For clinical practice, gene polymorphisms of specific immunological or physiological mediators appear to be of major importance. These genetic variants, which modify the regulation or function of either Pathogen Recognition Receptors or inflammatory mediators, have been associated with susceptibility and/or outcome of severe sepsis and septic shock. All steps of the host response to bacteria clearance have been shown to be potentially affected by genetic factors. However genetic studies in sepsis have produced contradictory results related in part to methodological faults. Improved adherence to published guidelines of good study design will help to ensure that genetic epidemiology contributes to a better classification of the heterogeneous septic population.

The impact of these findings on the understanding of infectious disease pathogenesis and on the design of future preventive and therapeutic strategies should also be considerable.

S06 Quorum sensing and other cell signaling mechanisms between bacterial pathogens

Steven Culp
Pawtucket, USA

Bacteria has long been known to have the capacity to sense environmental clues such as substrate availability and recognition of concentration gradients to direct motility. What has recently become apparent is the existence of extensive communication networks between bacteria of the same species and even signals between bacteria and eukaryotes, including human tissues. These communication networks are generally referred to as quorum sensing and often function by a sudden alteration in the transcriptional programs of bacteria after a threshold of chemical mediators produced by other bacteria is reached within the microenvironment of bacterial cells. There are at least four recognized signaling systems in bacterial pathogens that infect humans and numerous variations on these basic pathways are now described. An emerging field of sociomicrobiology or chemical microbial ecology has developed in an effort to understand bacterial communication. The potential exists to manipulate these pathways as a therapeutic option in invasive bacterial infections or infections of prosthetic devices. A number of quorum sensing inhibitors are in preclinical or clinical studies with the ultimate goal of using small molecule inhibitors of bacterial communication to disrupt bacterial pathogenesis. Other forms of bacterial communication probably exist including the use of electrical field currents and vibratory waves to alter behavior of bacterial populations. Whether these alternative communication systems are amenable to therapeutic manipulation remains to be demonstrated in further preclinical and clinical research.
Session II: How and Why Sepsis Kills

Keynote Lecture

S09 Mechanisms of meningeal invasion during meningococcemia
Mathieu Coureui, Xavier Nassif
Paris, France

Neisseria meningitidis is a commensal of the human nasopharynx that in some circumstances can invade the bloodstream, cross the blood brain barrier and invade the meninges. The bacteria enter the central nervous system following a direct interaction with the luminal side of the cerebral endothelium, which constitutes the blood–brain barrier. To breach the barriers protecting the brain, N. meningitidis must cross a monolayer of tight junction-expressing endothelial or epithelial cells. The limited number of pathogens capable of crossing these tight barriers and invading the meninges suggests that they display very specific attributes. For N. meningitidis, type IV pili have been identified as being essential for meningeal invasion by inducing the formation of microvilli like structures on the apical surface of the endothelial cells. This lecture will focus on the molecular basis of the interaction of N.meningitidis with human brain endothelial cells and the mechanisms by which this interaction leads to the opening of the blood brain barrier.

BioMérieux Sponsored Session

Pro- or Anti-inflammation Treatment - Which way to go in your Patients with Severe Sepsis

S10 Anti-inflammatory approaches to the treatment of sepsis
Steven Opal
Pawtucket, USA

The early events that follow the invasion of the patient by microbial pathogens are characterized by localized activation of the innate immune response. If these local defenses are breached, generalized activation of the innate and adaptive immune response follows. This initial host response is often accompanied by classic signs of inflammation followed by hemodynamic sequelae, activation of the coagulation system, tissue hypoperfusion, multi-organ failure and death. Interventions designed to stop this process in the early phases of excessive inflammation that has formed the basis of numerous immunomodulatory strategies tested over the last three decades.

The therapeutic benefits of anti-inflammatory agents have been extensively documented in animal models of sepsis but have largely failed to show efficacy in clinical trials of human sepsis. While there is a number of potential explanations for the failure of translational research to bring these agents into clinical practice, one of the fundamental issues remain the difficulty in verifying the inflammation hypothesis in a large number of patients enrolled in sepsis trials. It has become increasingly clear that many patients have only transient hyper-inflammation followed by prolonged periods of relative immune refractoriness. In some patients there may be no excessive inflammatory state at all and the response to systemic infection is predominantly immunosuppression.

If anti-inflammatory strategies are to be successful, identification of patients with various stages of immunosuppression and avoidance of the use of anti-inflammatory agents in such patients. The state of immune activation or suppression cannot be distinguished by SIRS criteria alone. A reliable set of immunologic biomarkers need to be identified and utilized to inform the clinical investigator of the state of the patient’s immune response before intervening with experimental anti-inflammatory agents. The failure to develop such assays will impede further progress in this field of sepsis research.

S11 Immune stimulation in severe sepsis
Richard Hotchkiss
St Louis, USA

Sepsis is a highly lethal disorder that is responsible for over 210,000 deaths annually in the U.S alone. Developing new therapies for sepsis has been particularly frustrating and over thirty trials of new agents have failed. This failure has been due in part to a lack of understanding of the critical pathogenic mechanisms driving sepsis. Sepsis initiates a complex immunologic response that varies over time. Although recent studies show that both a hyper-inflammatory and an anti-inflammatory response are triggered nearly simultaneously in sepsis, the early net result is characterized by a hyper-inflammatory response of varying magnitude due to many factors including the number and virulence of the pathogens and host co-morbidities. The majority of patients survive the hyper-inflammatory phase and enter a stage of protracted immunosuppression which has been termed “immunoparalysis.” This immunosuppression in sepsis is manifest by loss of delayed type hypersensitivity response to positive control antigens, failure to clear the primary infection, and development of new secondary infections. The clinical relevance of this immunosuppressed state is evidenced by the frequent occurrence of infection by relatively avirulent and often multidrug-resistant bacterial, viral, and fungal pathogens such as Stenotrophomonas, Acinetobacter, Candida and Pseudomonas species, enterococci, and cytomegalovirus.

Sepsis can be considered as a race to the death between the pathogens and the host immune response. Pathogens seek an advantage by incapacitating various aspects of host defenses. For example, they induce the apoptotic depletion of immune effector cells, suppress the expression of MHC Class-2 molecules, increase expression of negative co-stimulatory molecules, increase anti-inflammatory cytokines, and augment levels of T-regulatory and myeloid-derived suppressor cells. Sepsis-induced apoptosis is particularly noteworthy because there is profound depletion of cells of both the innate and adaptive immune system.

Furthermore, uptake of apoptotic cells further impairs host immunity by inducing an anti-inflammatory phenotype in phagocytic cells which consume the cellular corpses. Prevention of this sepsis-induced apoptotic progression appears to attenuates the immunosuppressive cascade and leads to sustained immunity.

Perhaps the most important implication of this evolving concept of immunosuppression as a major pathogenic mechanism is sepsis relates to potential new therapies. The fundamental problem in these patients is loss of immune competence, eradicating a particular class of pathogens will likely result in super-infection with other microorganisms. In addition to developing clinical practices to avoid infections, attention should be directed at methods to enhance or restore immune function in critically ill patients. Although there is risk of exacerbating the early hyper-inflammatory phase of sepsis, methods to quantify the immune competence of each patient and appropriately time immunotherapy should minimize this danger. A number of potential new immunotherapies will be discussed.

S12 Individualized treatment for severe sepsis, are biomarkers ready for prime time
John Marshall
Toronto, USA

A biomarker is an objective biological parameter that facilitates patient stratification on the basis of diagnosis or prognosis, and permits an evaluation of response to therapy. Although the word carries a connotation of arcane, exotic, or exceedingly costly, the reality is that the practice of individualized treatment for severe sepsis, are biomarkers ready for prime time

Institut Pasteur, Paris, France 1–3 September 2010 11
can establish a diagnosis more rapidly than is possibly using contemporary technology. Since effective early antibiotic therapy is an important determinant of outcome in sepsis, tools such as PCR-based assays for microbial DNA may permit earlier identification and management of the specific infection responsible for sepsis in the individual patient. A second need is for tools demonstrating greater sensitivity to an abnormal state – identifying regional tissue hypoxia, for example, before it can be detected on the basis of increased lactate release. The most compelling need, however, is for biomarkers that can identify patients who are likely to experience differential responses to treatments. For example, treatments targeting endotoxin are most likely to be efficacious in patients who are endotoxemic, while the replacement of activated protein C is most likely to be of most use in those patients who are protein C deficient, or who lack the capacity to convert protein C to its activated form. It is implausible that these patient populations are identical, nor that they will be readily identified on the basis of physiologic criteria of sepsis syndrome or SIRS alone. Moreover just as insulin therapy is titrated to the blood glucose level, so both the dose and duration of mediator-directed therapy will be optimized by titration to levels of valid biomarkers.

Identifying and validating biomarkers that can inform therapeutic decisions is difficult, for it is predicated on the availability of an effective treatment. An evolving body of data indicate that procalcitonin can be used to guide the duration of antibiotic therapy. Studies on the use of protein C or endotoxin levels to guide therapies targeting protein C or endotoxin are in progress. Rapid assay of genetic polymorphisms may enable identification of patients most likely to benefit from treatment with activated protein C. Yet while the need is great and the promise compelling, the reality of 2010 is that biomarkers have yet to have a proven role in the adjuvant therapy of sepsis.

Session III: The Host Response

S13 Early recognition and initial signaling

Tom van der Poll

Amsterdam, The Netherlands

The innate immune system is able to sense the presence of potential pathogens by the expression of a limited number of pattern-recognition receptors (PRRs). PRRs recognize highly conserved, soluble motifs derived from essential structures expressed by pathogens but absent in higher eukaryotes. These microbial elements are collectively referred to as pathogen-associated molecular patterns (PAMPs). Recent evidence suggests that PRRs also serve as early warning systems or danger signals as they have the capacity to recognize endogenous mediators released during tissue damage, independent of actual invasive infection. These endogenous danger signals are released in burns, trauma and tissue necrosis and have been termed “alarmins” or DAMPs (danger-associated molecular patterns).

Toll like receptors (TLRs) are critically important PRRs in the initiation of the innate immune response to bacteria. During an evolving infection distinct TLRs recognize different PAMPs expressed by pathogens, whereby the relative contribution of different TLRs at least in part depends on the bacterial burden. In addition, the recognition of bacteria by TLRs may be hampered by thick capsules, which may shield TLR ligands expressed by pathogens. Moreover, during progressing sepsis TLRs may amplify inflammatory responses by the interaction with DAMPs released after tissue injury. As such, the role of TLRs in sepsis is complex, contributing to responses that can be either beneficial or detrimental to the host.

This lecture will present recent experimental data on the function and cooperation of distinct TLRs during severe bacterial infection in vivo. The lecture will focus on clinically relevant pathogens (Streptococcus pneumoniae, Klebsiella pneumoniae and Escherichia coli) and the two most common infectious causing sepsis (pneumonia and peritonitis).

S14 The hormonal-bioenergetic-metabolic response

Mervyn Singer

London, UK

The inflammatory septic insult triggers a phasic response in downstream pathways. The initial acute phase response requires the organism to ‘fight the foe’. It does so through neural, hormonal and cytokine signaling that (i) mobilises substrate and increases energy production to cope with the increase in metabolic demands (including a thermal response), (ii) diverts resources away from organs less vital for self-defence, and (iii) facilitates entry of immune cells to the infected area. In many patients, recovery quickly ensues and normal activity recommences. However, a proportion of patients fail to quench the inflammatory fires and progress to suffer organ dysfunction and failure. This occurs as a consequence of impaired tissue perfusion, a failure to generate sufficient energy (bioenergetic failure) and, possibly, a programed metabolic shutdown analogous to hibernation/estivation. Multi-organ failure thus appears to be driven by a combination of direct mitochondrial inhibition/damage/oxygen lack, by alterations in hormonal profile that depress mitochondrial and metabolic activity, and by a decrease in expression of genes encoding for mitochondrial proteins. Recovery from organ failure is thus dependent on a reversal of these processes. To what extent we can therapeutically modulate these pathways represents one of the major challenges of the next 10-20 years.

S15 Dendritic cells

Jean-Daniel Chiche

Paris, France

Sepsis is a highly lethal disorder that is responsible for over 210,000 deaths annually in the U.S alone. Developing new therapies for sepsis has been particularly frustrating and over thirty trials of new agents have failed. This failure has been due in part to a lack of understanding of the critical pathogenic mechanisms driving sepsis. Sepsis initiates a complex immunologic response that varies over time. Although recent studies show that both a hyper-inflammatory and an anti-inflammatory response are triggered nearly simultaneously in sepsis, the early net result is characterized by a hyper-inflammatory response of varying magnitude due to many factors including the number and virulence of the pathogens and host co-morbidities. The majority of patients survive the hyper-inflammatory phase and enter a stage of protracted immunosuppression which has been termed “immunoparalysis”. This immunosuppression in sepsis is manifest by loss of delayed type hypersensitivity response to positive control antigens, failure to clear the primary infection, and development of new secondary infections. The clinical relevance of this immunosuppressed state is evidenced by the frequent occurrence of infection by relatively avirulent and often multidrug-resistant bacterial, viral, and fungal pathogens such as Stenotrophomonas, Acinetobacter, Candida and Pseudomonas species, enterococci, and cytomegalovirus.

Sepsis can be considered as a race to the death between the pathogens and the host immune response. Pathogens seek an advantage by incapacitating various aspects of host defenses. For example, they induce the apoptotic depletion of immune effector cells, suppress the expression of MHC Class-2 molecules, increase expression of negative co-stimulatory molecules, increase anti-inflammatory cytokines, and augment levels of T-regulatory and myeloid-derived suppressor cells. Sepsis-induced apoptosis is particularly noteworthy because there is profound depletion of cells of both the innate and adaptive immune system.
Furthermore, uptake of apoptotic cells further impairs host immunity by inducing an anti-inflammatory phenotype in phagocytic cells which consume the cellular corpses. Prevention of this sepsis-induced apoptosis apparently attenuates the immunosuppressive cascade and leads to sustained immunity.

Perhaps the most important implication of this evolving concept of immunosuppression as a major pathogenic mechanism is sepsis relates to potential new therapies. The fundamental problem in these patients is loss of immune competence; eradicating a particular class of pathogens will likely result in super-infection with other microorganisms. In addition to developing clinical practices to avoid infections, attention should be directed at methods to enhance or restore immune function in critically ill patients. Although there is risk of exacerbating the early hyper-inflammatory phase of sepsis, methods to quantify the immune competence of each patient and appropriately time immunotherapy should minimize this danger. A number of potential new immunotherapies will be discussed.

Session IV: How to Help the Host Fight Back

S17 Fluid resuscitation and cardiovascular support
Jean-Louis Vincent
Brussels, Belgium

S18 Renal support and replacement in sepsis
Christophe Vinsonneau
Paris, France

S19 The gut and nutrition in sepsis
John Marshall
Toronto, Canada

Despite its relatively simple anatomic architecture and its humble role in the basic physiologic functions of eating and elimination, the gastrointestinal tract is a highly complex organ that exerts a fundamentally important role in metabolic and immunologic homeostasis. Derangements in gut function are common in critical illness, and play an important, though largely occult role in the characteristic pathologic derangements of sepsis.

The normal human GI tract houses an extraordinarily diverse microflora, comprising 1000 or more distinct microbial species, and outnumbering the cells of its human host by a factor of 10 to 1. This flora plays a key role in the development of the gut microvascular architecture, in the expression of key digestive enzymes, and in the development and maturation of the systemic immune response. The complexity of this role is underlined by the fact that interactions between the endogenous gut flora and the host enable the host to mount a rapid and effective response to invasive microorganisms, while maintaining a state of mutual tolerance at the microbial-mucosal interface in the gut wall. Cell wall constituents of gut luminal bacteria, including LPS and peptidoglycan, can be absorbed through the gut wall, and modulate systemic immunity. It has recently been shown, for example, that normal neutrophil killing activity requires induction of Nod1 by peptidoglycan from bacteria in the gut lumen.

Critical illness is associated with a reduction in the diversity of the gut microbiota (particularly the anaerobic flora), and overgrowth of the upper gut by opportunistic species such as *S. epidermidis*, the *Enterococcus*, *Pseudomonas*, and *Candida* – the same species that predominate in ICU-acquired infections. Moreover stress in the host induces enhanced virulence of organisms such as *Pseudomonas*, potentially transforming this bacterium from a saprophyte into a pathogen. Critical illness is also associated with increased rates of translocation of viable organisms and bacterial cell wall products across the gut wall. Multiple factors contribute to gut dysmotility in the critically ill including ileus resulting from bed rest and narcotics, reduced splanchnic blood flow, ablation of gastric acidity, the disruptive effects of systemic antibiotics, and a lack of enteral feeding. Luminal nutrition serves both local and systemic roles. Locally enteral feeding stimulates gut peristalsis and provides nutrients to maintain the integrity of the gut wall. On a systemic level, and in part because of its local effects on the gut, enteral nutrition reduces infectious risk and attenuates inflammatory responses. Systematic reviews indicate the superiority of the enteral route of feeding, and suggest additional benefit for the use of feeding formulations enriched in antioxidants. This latter hypothesis is the focus of ongoing large clinical trials.

Session V: Refining the Treatment of Sepsis

S20 Respiratory support in ARDS and sepsis
Gordon Bernard
Nashville, USA

The use of positive end-expiratory pressure (PEEP) in the treatment of the acute respiratory distress syndrome (ARDS) was introduced by Ashbaugh and Petty more than 40 years ago. Since then a massive literature has accumulated addressing various methods of PEEP titration, along with other methods of modulation of airway pressure during mechanical ventilation, yet substantial controversy remains. Few practitioners question the effect PEEP has on oxygenation and oxygen delivery in most ARDS patients, but how much to use and the optimal means of titration are far from established.

The size of the compulsory tidal volume provided to critically ill patients requiring mechanical ventilation was recommended to be in the range of 10-15 ml/kg of body weight in the early days of the development of intensive care units and substantial evidence to reduce it as a routine practice was not available until 30 years later.

Various modes of ventilatory support and weaning from mechanical ventilation was approached through a number of disparate methods and some components of current techniques remain controversial and under further study. Both due to these improvements and in spite of the lack of evidenced-based improvements in some areas, survival from sepsis induced ALI has improved substantially over the past quarter century. Evidence to support the most common approaches to mechanical ventilation in sepsis-induced ALI will be presented along with some data-supported ancillary techniques thought to be important in the outcome of this population.

S21 Biomarker guided detection and treatment of sepsis
Konrad Reinhart
Jena, Germany

Sepsis is difficult to diagnose and often treated too late which is related to an increase in mortality rate. On the other hand, time of anti-microbial treatment is often too long which may result in an increase of adverse effects and contribute to antimicrobial resistance. At the bedside, a sepsis marker is only useful if it adds value to the physician’s clinical judgment. Ideally, an infection/sepsis marker should meet the following demands: to shorten the time to and improve the diagnosis, to facilitate the differentiation between infectious and non-infectious causes of inflammation and its squealed organ dysfunction or shock, to allow the differentiation between viral and bacterial infections, to represent the effectiveness of antimicrobial treatment and other measures of source control more accurately than conventional clinical and laboratory signs.

In the meanwhile it could be demonstrated in a number of well-designed RCTS that the use of PCT in anti-biotic stewardship results in a reduction of antibiotic use by a range of 45 – 50% without interfering with patient outcome. A proof of concept study demonstrated in severe sepsis patients that this might also be possible for these patients. A large RCT with 1,000 patients by the SepNet clinical trials group is ongoing in Germany to test this hypothesis. However, PCT has some limitations as infection and sepsis marker. It may increase also for other reasons such as trauma, burns, major surgery, birth stress; some forms of cancer and by
treatment of patients with some immunosuppressives drugs such as OKT3 and antilymphocyte sera.

Pangenomic as well as targeted microarrays allow monitoring effects of pathogen associated molecular patterns on the host-cell transcriptome. Thus, transcriptomic signatures potentially can differentiate infectious from non-infectious host response thereby differentiating SIRS form sepsis. There is first data that suggest the RNA derived molecular fingerprints may overcome some of the limitations of PCT as a sepsis marker. However, this needs to be tested in further clinical trials.

S22
Targeting coagulation and endothelium in sepsis
Jean-François Dhainaut
Paris, France

In acutely ill patients, including those treated in intensive care units, the occurrence and degree of hyperglycaemia are associated with increased morbidity and mortality in a variety of patient groups. As a result, Van den Bergh and colleagues studied the impact of intensive insulin therapy designed to maintain the normoglycaemia, on the outcome of critically ill patients. In their first study published in 2001, patients in a surgical intensive care unit treated with intensive insulin therapy had a reduced mortality and the study stated that the greatest reduction mortality “involved deaths due to multiple-organ failure with a septic focus”[1]. These data had great face validity as patients with diabetes mellitus are known to be at increased risk of infection and commonly in use to treat such as catecholamine infusions and corticosteroids may further impair glucose control in patients with severe sepsis. Subsequent to the landmark study in 2001, Van den Bergh and colleagues and other investigators have reported additional trials studying the impact of intensive insulin therapy in a number of populations of critically ill patients. In the VISEP study, Brunkhorst and colleagues investigated the impact of intensive insulin therapy in patients with severe sepsis admitted to 18 intensive care units in Germany,[2] they reported no improvement in outcome in patients treated with intensive insulin therapy. In 2008, Van den Bergh and colleagues reported the combined results of their trials in patients treated in the surgical and medical ICUs in Leuven,[3] in that paper they reported a post-hoc analysis analysing the impact of intensive insulin therapy on the outcome of 950 patients classified in as having severe sepsis, 172 of 471 (33.4%) patients treated with conventional insulin therapy died in hospital compared with 160 of 479 (33.4%) patients treated with intensive insulin therapy (odds ratio 0.87, 95% CI 0.67 – 1.14). In the NICE-SUGAR Trial which randomly assigned 6104 patients treated in ICUs in Australia, New Zealand, Canada or the USA to an intensive blood glucose control target of 4.5 – 6.0 mmol/L or a conventional target of less than 10.0 mmol/L,[4] 1299 patients were classified as having a severe sepsis at baseline. In these patients the effect of intensive glucose control was almost exactly the same as in patients who did not have severe sepsis, odds ratio for death 1.13 (0.89 – 1.44) compared to 1.15 (1.01 – 1.31), P value for heterogeneity = 0.93 Most recently Annane and colleagues reported that intensive insulin therapy did not improve the outcome of patients with severe sepsis being treated with corticosteroids.[5]

Most commentators and organisations such as the American Diabetes Association do not now recommend intensive glucose control for adult patients treated in intensive care units.[6] Despite the appealing theoretic rationale, there are no robust data to suggest that patients with severe sepsis respond differently to this treatment than do other critically ill patients. In patients with sepsis, as in critically ill patients in general, the conflict between the results of the studies conducted in Leuven and elsewhere leaves many questions to be answered.

Reference

S23
Glucose control and other holistic treatments
Simon Finfer
Sydney, Australia

In acutely ill patients, including those treated in intensive care units, the occurrence and degree of hyperglycaemia are associated with increased morbidity and mortality in a variety of patient groups. As a result, Van den Bergh and colleagues studied the impact of intensive insulin therapy designed to maintain the normoglycaemia, on the outcome of critically ill patients. In their first study published in 2001, patients in a surgical intensive care unit treated with intensive insulin therapy had a reduced mortality and the study stated that the greatest reduction mortality “involved deaths due to multiple-organ failure with a septic focus”[1]. These data had great face validity as patients with diabetes mellitus are known to be at increased risk of infection and commonly in use to treat such as catecholamine infusions and corticosteroids may further impair glucose control in patients with severe sepsis. Subsequent to the landmark study in 2001, Van den Bergh and colleagues and other investigators have reported additional trials studying the impact of intensive insulin therapy in a number of populations of critically ill patients. In the VISEP study, Brunkhorst and colleagues investigated the impact of intensive insulin therapy in patients with severe sepsis admitted to 18 intensive care units in Germany,[2] they reported no improvement in outcome in patients treated with intensive insulin therapy. In 2008, Van den Bergh and colleagues reported the combined results of their trials in patients treated in the surgical and medical ICUs in Leuven,[3] in that paper they reported a post-hoc analysis analysing the impact of intensive insulin therapy on the outcome of 950 patients classified in as having severe sepsis, 172 of 471 (33.4%) patients treated with conventional insulin therapy died in hospital compared with 160 of 479 (33.4%) patients treated with intensive insulin therapy (odds ratio 0.87, 95% CI 0.67 – 1.14). In the NICE-SUGAR Trial which randomly assigned 6104 patients treated in ICUs in Australia, New Zealand, Canada or the USA to an intensive blood glucose control target of 4.5 – 6.0 mmol/L or a conventional target of less than 10.0 mmol/L,[4] 1299 patients were classified as having a severe sepsis at baseline. In these patients the effect of intensive glucose control was almost exactly the same as in patients who did not have severe sepsis, odds ratio for death 1.13 (0.89 – 1.44) compared to 1.15 (1.01 – 1.31), P value for heterogeneity = 0.93 Most recently Annane and colleagues reported that intensive insulin therapy did not improve the outcome of patients with severe sepsis being treated with corticosteroids.[5]

Most commentators and organisations such as the American Diabetes Association do not now recommend intensive glucose control for adult patients treated in intensive care units.[6] Despite the appealing theoretic rationale, there are no robust data to suggest that patients with severe sepsis respond differently to this treatment than do other critically ill patients. In patients with sepsis, as in critically ill patients in general, the conflict between the results of the studies conducted in Leuven and elsewhere leaves many questions to be answered.

Reference

S24
Apoptosis in sepsis- only signature of severity or therapeutic targets?
Richard Hotchkiss
St Louis, USA

Sepsis is a highly lethal disorder that is responsible for over 210,000 deaths annually in the U.S alone. Developing new therapies for sepsis has been particularly frustrating and over thirty trials of new agents have failed. This failure has been due in part to a lack of understanding of the critical pathogenic mechanisms driving sepsis. Sepsis initiates a complex immunologic response that varies over time. Although recent studies show that both a hyper-inflammatory and an anti-inflammatory response are triggered nearly simultaneously in sepsis, the early net result is characterized by a hyper-inflammatory response of varying magnitude due to many factors including the number and virulence of the pathogens and host co-morbidities. The majority of patients survive the hyper-inflammatory phase and enter a stage of protracted immunosuppression which has been termed “immunoparalysis”. This immunosuppression in sepsis is manifest by loss of delayed type hypersensitivity response to positive control antigens, failure to clear the primary infection, and development of new secondary infections. The clinical relevance of this immunosuppressed state is evidenced by the frequent occurrence of infection by relatively avirulent and often multidrug-resistant bacterial, viral, and fungal pathogens such as Stenotrophomonas, Acinetobacter, Candida and Pseudomonas species, enterococci, and cytomegalovirus.

Sepsis can be considered as a race to the death between the pathogens and the host immune response. Pathogens seek an advantage by incapacitating various aspects of host defenses. For example, they induce the apoptotic depletion of immune effector cells, suppress the expression of MHC Class-2 molecules, increase expression of negative co-stimulatory molecules, increase anti-inflammatory cytokines, and augment levels of T-regulatory and myeloid-derived suppressor cells. Sepsis-induced apoptosis is particularly noteworthy because there is profound depletion of cells of both the innate and adaptive immune system.

Furthermore, uptake of apoptotic cells further impairs host immunity by inducing an anti-inflammatory phenotype in phagocytic cells which consume the cellular corpses. Prevention of this sepsis-induced apoptosis apparently attenuates the immunosuppressive cascade and leads to sustained immunity.

Perhaps the most important implication of this evolving concept of immunosuppression as a major pathogenic mechanism is sepsis relates to potential new therapies. The fundamental problem in these patients is loss of immune competence; eradicating a particular class of pathogens will likely result in super-infection with other microorganisms. In addition to developing clinical practices to avoid infections, attention should be directed at methods to enhance or restore immune function in critically
ill patients. Although there is risk of exacerbating the early hyper-inflammatory phase of sepsis, methods to quantify the immune competence of each patient and appropriately time immunotherapy should minimize this danger. A number of potential new immunotherapies will be discussed.

Session VII: Clinical Trials in Sepsis- Lessons from the Past and Ongoing Trials

Keynote Lecture

S25 Pragmatic trials: a bold new paradigm for sepsis research
Stephen MacMahon
Sydney, Australia

Over the past few decades, the treatment of several acute vascular conditions including myocardial infarction and ischaemic stroke has been revolutionised and case-fatality greatly reduced, primarily as a consequence of findings from “mega-trials”. For example, it was mega-trials (and their meta-analyses) that proved the value of thrombolysis for both acute myocardial infarction and ischaemic stroke. It was also mega-trials that proved the value of aspirin and clopidogrel in acute coronary syndromes. Typically, these trials included tens of thousands of patients among whom a thousand or more primary outcome events were observed. Such trials were able to detect improvements in mortality as small as 10-15% with a single treatment, and on that basis packages of care have been developed that have collectively more than halved case-fatality rates.

The practical success of such mega-trials is importantly dependent upon simplicity. To recruit such large numbers and ensure full follow-up with realistic financial resources requires broad entry criteria, minimal data collection and straightforward outcomes (such as total mortality). However, this pragmatic approach is often at odds with prevailing clinical views that favour seeking much larger – though probably implausible – treatment benefits in trials with much smaller numbers of patients. In numerous areas of medicine, this has resulted in treatments, now known to be essential, going unrecognised for much longer than was necessary, with many lives lost that would otherwise have been saved. Indeed, it is inevitable that many treatments believed today to be ineffective are actually worthwhile but have been studied in trials that were too small to detect moderate but worthwhile benefits.

S26 Use of oral lactoferrin as a preventive and therapeutic strategy for severe sepsis
Steven Opal
Pawtucket, USA

Lactoferrin is an antimicrobial protein that is found in high concentrations within the specific granules of neutrophils and in mammalian breast milk. Lactoferrin has numerous salutary effects in controlling bacterial populations including: potent LPS neutralizing ability through it’s specfic LPS binding domain, iron sequestration, direct antibacterial effects by permeabilizing cell membranes, promoting bactericidal activity of phagocytic cells, neutrophils in the clearance of both gram-negative and gram-positive bacteria, activation of dendritic cells and antigen presenting cells, and promotion of the activity of gut-associated lymphatic tissue. It has long been considered a potential preventive treatment against invasive bacterial pathogens. Recent clinical studies now support the potential therapeutic utility of lactoferrin as a preventative and strategy in therapeutic human sepsis. A multicenter clinical trial with bovine-derived lactoferrin has been tested against placebo in a large multicenter trial for the prevention of neonatal sepsis (n=472). Oral administration of lactoferrin in high risk neonates statistically significantly reduced the incidence of late onset sepsis, reduced mortality, prevented necrotizing enterocolitis and was particularly useful in the smallest premature babies weighing less than 750 grams. A recombinant human form of lactoferrin (talactoferrin) has also been tested in a multicenter phase II trial in adult sepsis. The oral administration of telactoferrin in this study was shown to statistically significantly reduce the overall 28-day mortality rate in high risk patients in this 190 patient clinical trial from 26% (placebo) to 14.6% (treatment). Phase III testing of this, non-absorbed, human anti-bacterial protein is planned in the near future.

S27 Prowess shock: activated protein C in septic shock
Marco Ranieri
Turin, Italy

Eritoran is a synthetic analogue of the lipid A form of LPS from a non-toxic gram-negative bacterium known as Rhodobacter sphaeroides. Eritoran is a potent inhibitor of MD2-TLR4 signaling and blocks LPS mediated pathologic events in a variety of preclinical models of endotoxin-induced shock. Eritoran is a competitive inhibitor for lipid A binding within the hydrophobic pocket of MD2. If Eritoran occupies this MD2 pocket, lipid A from pathogens cannot bind to the MD2-TLR4 signaling complex and this effectively terminates LPS signaling in the host tissues. Eritoran itself lacks LPS agonistic activity as the molecule is tetra-acylated rather than hexa-acylated and lacks a critical myristic acid at the R2 position necessary to activate the ecto-domain of TLR4. Eritoran has been extensively studied in phase I and phase II clinical testing and is the first toll-like receptor inhibitor that has advanced to phase III clinical testing in a multinational sepsis trial. This 2000-patient trial should be completed in September of 2010 and results of the study should be available within the first quarter of 2011.

S28 Activated protein C and corticosteroids
Djillali Annane
Paris, France

Ten years ago, Rivers et al published a highly interesting single center study suggesting that an algorithm to protocolize resuscitation, with decisions guided by central venous pressure and oxygen saturation, could significantly improve mortality from septic shock. The algorithm, dubbed ‘Early Goal Directed Therapy’ (EGDT) drove decisions for the first six hours of care, initiated in the Emergency Department. EGDT included a number of traditional steps relating to use of fluids and vasopressors. In addition, it also involved use of a proprietary central venous catheter which allowed continuous measurement of central venous oxygen saturation, and the oxygenation parameters drove instructions for blood transfusion and use of inotropes, steps that are a little less traditional for septic shock. In the wake of the trial, many centers around the world have attempted to adopt EGDT, often reporting success in before-and-after study designs. However,
there were no confirmatory randomized trials. In response, three large government-funded randomized trials have been initiated. In Australia and New Zealand, EGDT is being tested against usual care for septic shock in 1300 patients (650 per arm) in a trial known as ARISE. In the US, EGDT is being tested in a three-arm trial (ProCESS) against usual care and a protocolized usual care arm that does not involve use of the central venous catheter and does not include blood transfusion or inotropic instructions. This trial will also study 650 patients per arm. Finally, in the UK, a trial entitled ProMISE, EGDT is being tested against British usual care in a 2-arm trial similar in size to ARISE. All 3 trials will administer EGDT via a standard-ized trained team, akin to trauma teams. All 3 trial investigator groups have collaborated to ensure similar data collection and delivery of EGDT, thus facilitating a post-trial individual patient meta-analysis. In this talk, I will review the design and status of these trials.

S32 Lipopolysaccharide removal
John Marshall
Toronto, Canada

Lipopolysaccharide (LPS) or endotoxin – an integral component of the cell wall of Gram-negative bacteria - is a potent trigger of an innate immune response. Extensive investigation in both animal models and human volunteers has shown that LPS alone can evoke the characteristic features of sepsis including, with higher doses, organ dysfunction and death. Endotoxemia – the presence of elevated LPS levels in the blood – is common during Gram-negative infection. But endotoxaemia can occur in association with Gram-positive infection, as well as in a variety of non-infectious inflammatory states such as ischaemia reperfusion injury, shock, multiple trauma, pancreatitis, burns, and splanchic ischemia. Indeed a majority of patients admitted to an ICU show increased endotoxin levels on the day of ICU admission, suggesting that gut or environmental reservoirs may be numerically more important than invasive infection in the etiology of endotoxemia.

Multiple strategies for LPS removal or detoxification have been studied; the results to date have been muted. Endotoxin can be neutralized using a monoclonal antibody, or through the administration of endogenous neutralizing proteins such as bactericidal-permeability increasing protein or HOL. It can be detoxified through the activity of the enzyme alkaline phosphatase. Alternatively, its interaction with cell surface receptors can be blocked though the use of antibodies directed at these, or through the use of a non-toxic synthetic antagonist. A recent study (EUPFRATES) of antibiotic polymyxin B ends detoxification with high affinity, and extracorporeal removal of LPS using hemoperfusion against a polymyxin B column has gained popularity – particularly in Japan where the technique was developed and popularized.

Pooled data from multiple small studies of variable methodologic quality have shown that polymyxin B hemoperfusion can improve survival for patients with severe sepsis. Cruz and colleagues in a small multicenter Italian study of patients with severe sepsis secondary to peritonitis also reported that polymyxin B hemoperfusion resulted in a survival benefit.

A more definitive test of the efficacy of polymyxin B hemoperfusion is currently in progress in a North American study that will recruit 300 patients. Entry into the EUPFRATES trial requires both clinical evidence of distributive shock and an elevated endotoxin level of greater than 0.6 endotoxin activity units as measured using the chemiluminescent Endotoxin Activity Assay®. Efficacy will be measured as survival over 28 and 90 days.

LPS is an attractive target in sepsis, both because of its well-established role in the pathogenesis of the clinical syndrome, and because of its prevalence in a population of septic patients. However the assumption that endotoxemia per se is necessarily detrimental is likely to be overly simplistic, and the probability of success for future work will be increased by targeting patients with documented endotoxia and titrating therapy to as yet unidentified optimal levels.

S33 European revival of albumin in sepsis: EARSS and ALBIOS
Jean-Paul Mira
Paris, France

The efficacy of albumin administration on survival in the critical care setting remains controversial. Hence, several meta-analyses have reported negative, neutral, or beneficial effects of albumin administration. To clarify this controversy, the Saline versus Albumin Fluid Evaluation (SAFE) study has been performed, comparing the effects of 4% albumin vs. saline for volume replacement in critically ill patients. The results demonstrated no differences in 28-day mortality between the two randomized groups, but confirmed the safety of albumin administration in acutely ill patients. Furthermore, a predefined subgroup analysis has shown a trend of longer survival in albumin-treated septic patients treated. Moreover, hypoalbuminemia is common in critically ill patients such as septic patients and is associated with worse outcomes. However, it is not known if hypoalbuminemia is just an excellent biomarker or if correcting hypoalbuminemia has beneficial effects on survival of septic patients, because albumin has several important physiological effects with potentially beneficial effects
in critical illness. Thus, further studies are needed to clarify what precise role albumin has in today’s ICU.

Two current large multicenter European clinical trials try to understand the place of 20% albumin in severe sepsis treatment. These studies have similar end-points but different methodologies. Their main common objective is to analyze if 20% albumin administration in the early course of severe sepsis/septic shock reduces the 28th day mortality with a further control at 90th day. The secondary objectives are to verify the differences in organ dysfunctions (as assessed by the Sequential Organ Failure Assessment score), hospital and intensive care unit (ICU) length of stay between the treated and control group. The French study (EARSS) will include 800 patients and compare administration of 300 mL 20% albumin per day from D1 to D3 of septic shock to the same volume of saline. Albumin administration will not be allowed in the control group during the study. The Italian study (ALBIOS) aims to verify whether volume replacement with 20% albumin and its maintenance within plasmatic physiologic range (equal or above 30 g/l) improves survival of patients with severe sepsis of septic shock, as compared to crystalloids. ALBIOS will include about 1350 patients with severe sepsis or septic shock, which will be randomized to receive either albumin or crystalloids as fluid therapy. Volume replacement will be performed for both groups according to the early-goal directed therapy. Treated group will receive 60 gr albumin infusion after randomization, and 40-60 gr albumin daily infusion to maintain serum albumin level equal or above 30 g/l. Control group will receive crystalloids for the entire study; albumin administration will be allowed only when daily serum albumin level will be lower than 15 g/l. Patients will be treated until the 28th day after randomization or until ICU discharge.

The results of these two European studies will be available in 2010/2011 and will clarify the effects of 20% albumin in the settings of severe sepsis/septic shock.

S34 Fluid resuscitation in Africa
Kath Mainland
Kilifi, Kenya

Child survival programs have largely ignored the role of triage and emergency care in reducing child mortality, despite the fact that these interventions may be highly cost-effective. Over 50% of childhood deaths in African hospitals occur within 24 hours of admission, and shock complicates many of these cases. Adoption of simple treatment algorithms for the treatment of hypovolaemia and prevention of shock (irrespective of aetiology) could be of great benefit, but their effectiveness and safety have not been rigorously evaluated. Moreover, definitive evidence based guidelines for paediatric fluid resuscitation are hampered by the lack of adequate trials to influence choice of fluid. The prevailing controversy over crystalloid versus colloids solutions for treating paediatric septic shock also requires evaluation.

The FEAST (Fluid Expansion as a Supportive Therapy) trial is a multicountry pragmatic randomised controlled trial based at 6 hospitals in East Africa comparing the effect on mortality of volume expansion using 0.9% saline or human albumin solution (4%) with current practice (no bolus) in children less than 12 years of age. Interventions are administered at hospital admission, following rapid clinical assessment and randomisation. The trial includes 2,880 eligible children, it commenced in January 2009, and by July 2010 2200 children had been recruited. Children are assessed over 48 hours, and further fluid boluses given in strict accordance with the protocol.

The primary endpoint is in-hospital mortality at 48 hours post randomisation. Secondary endpoints include mortality at 4 weeks after randomisation; neurological sequelae at 4 weeks after randomisation; persistent neurological sequelae at 6 months; development of hypotensive shock within 48 hours of randomisation; adverse events within 48 hours of randomisation (pulmonary oedema; intracranial hypertension; severe allergic reaction in those receiving albumin).

S35 InFACT- did we learn anything from H1N1?
John Marshall
Toronto, Canada

The index human case of influenza caused by a novel H1N1 swine origin strain was identified in rural Mexico in March 2009; by June of the same year, cases had been documented in more than 180 countries worldwide, and the WHO declared the first level 6 pandemic of the 21st century. On the basis of the rapidity of spread of the virus, and the severity of illness for some patients, the WHO predicted in the summer of 2009 that upwards of 2 billion people might ultimately be infected, and that between 10 and 100 million of these would require ICU care. This number vastly exceeded available resources, and confronted the discipline of intensive care with an unprecedented challenge.

Working independently in the early stages of the pandemic, investigator-led research groups in Canada, Australia and New Zealand, Europe, England, and the United States launched observational cohort studies to characterize the epidemiology of severe H1N1 infection. In July of 2009, representatives from these various groups began to explore the possibility of global collaboration under the auspices of the International Forum for Acute Care Trials (InFACT) – a fledgling network of investigator led critical care research consortia.

The InFACT collaboration evolved rapidly, and with an unprecedented spirit of collegiality and collaboration. It involved 21 investigator-led groups, and received endorsement from 22 separate professional societies. As outlined in a commentary in the Lancet, the initiative encompassed five specific programs. Investigators from each of the national or regional registries agreed to work together to harmonize data sets and pool results to enhance the power of these observational studies. A clinical trials working group collaborated on the launch of 3 trials of statins or steroids for severe H1N1 infection, focusing their efforts on inexpensive interventions that would also benefit infected patients in the developing world. An ethics working group prepared and published a white paper on the ethical dimensions of pandemic research. A working group on care in the developing world developed a program to catalog global capacity for care and research during a pandemic. And a biomarkers working group focused on developing studies to better characterize the biology of severe H1N1 infection.

The second wave of H1N1 infection in the fall of 2009 proved much brief, less severe, and less widespread than originally predicted, with the result that InFACT H1N1 research initiatives were stalling for lack of patients. Nonetheless the legacy of H1N1 and the critical care professional response promises to be substantial. The clinical patient database now includes some 5000 patients with severe H1N1 infection, and secondary analyses are ongoing. The focus of clinical trials has shifted to a better understanding of the barriers to the rapid implementation of research during a pandemic, and the effort to catalog global research capacity is continuing to gain momentum. Perhaps most importantly, the experience revealed the common needs of clinical researchers around the world, and galvanized a commitment to greater international commitment to address these needs. InFACT was informally inaugurated earlier this year with a working steering committee and an inaugural membership of 15 groups; its formal launch is planned for later this year or early 2011.
Sepsis 2010 Best Abstract Awards

Poster awards are kindly supported by an educational grant from Merck & Co.

Authors of four best abstract awards will present their work as oral presentations on Thursday 2 September at 15:45 – 16:45.

P9
A novel molecular biomarker diagnostic for the early detection of sepsis
Deon Venter¹, Mervyn Thomas², Jeffrey Lipman³, Benjamin Tang¹, Anthony McLean⁴, Ranald Pascoe⁵, Gareth Price¹, Thu Nguyen¹, Richard Brandon⁶, Allison Sutherland²
¹Mater Adult Hospital, Pathology, Brisbane, Australia; ²Athelomics Pty Ltd, Immunobiology and Bioinformatics, Brisbane, Australia; ³Wesley Hospital, Intensive Care Medicine, Brisbane, Australia; ⁴Royal Brisbane & Women’s Hospital, Intensive Care Medicine, Brisbane, Australia; ⁵Nepean Hospital, Intensive Care Medicine, Sydney, Australia

P32
Two chromogranin A-derived peptides, chromofungin and catestatin induce neutrophil activation via a store-operated channel-dependent mechanism
Marie Hélène Metz-Boutigue¹,², Dan Zhang¹, Thomas Lavaux¹,³, Francis Schneider¹, Dominique Aunis¹
¹University of Strasbourg, Inserm Z575, Strasbourg, France; ²University of Strasbourg, University Hospital, Strasbourg, France; ³University of Strasbourg, Inserm U977, Strasbourg, France

P34
Cardiovascular hyporesponsiveness in sepsis is associated with G-protein receptor kinase expression via a nitric oxide-dependent mechanism
Daniela Dal Secco¹, Vania Olivon¹, Thiago Corrêa¹, Mara Rubia Celes¹, Monica Abreu¹, Marcos Rossi¹, Ana Maria Oliveira¹, Fernando Cunha¹, Jamil Assreuy¹
¹Federal University of Santa Catarina, Pharmacology, Florianopolis, SC, Brazil; ²University of Sao Paulo, Pharmacology, Ribeirao Preto, SP, Brazil; ³University of Sao Paulo, Pathology, Ribeirao Preto, SP, Brazil

P43
Soluble TLT-1 is a naturally occurring TREM-1 inhibitor and protects mice from hyperresponsiveness and death during sepsis
Marc Derive¹, Youcef Bouazza¹, Frédéric Massin², Corentine Alauzet¹, Bruno Levy¹,², Pierre-Edouard Bollaerts¹, Sébastien Gibot³
¹INSERM U1179 Groupe CHOC, 54, NANCY, France; ²Laboratoire d’Immunologie, CHU Brabois, 54, NANCY, France; ³EA 4369 - Laboratoire de Bactériologie - UHP, 54, NANCY, France; ⁴Service de Réanimation Médicale - TD6 - CHU Brabois, 54, NANCY, France; ⁵Service de Réanimation Médicale - Hôpital Central, 54, NANCY, France
Sepsis 2010: Poster Listing

P1 Epidemiology of sepsis in pediatrics: first Colombian multicenter pilot survey
J Camilo Jaramillo-Bustamante, A Marín-Agudelo, M Fernández-Laverde, J Bareño-Silva

P2 Randomized controlled trials are not designed to prove the safety of third-generation hydroxyethyl starch for resuscitation: results from a systematic review
CS Hartog, M Kohl, K Reinhart

P3 Effect of canine hyperimmune plasma on TNFα and inflammatory cell levels in a lipopolysaccharide-mediated rat air pouch model of inflammation
BE Essien, M Kotiw, H Butler, D Strunin

P4 Development of Klebsiella pneumoniae BS055-induced mouse model of sepsis-associated brain inflammation in BALB/c mice
V Kumar, A Sharma

P5 Withdrawn

P6 Lipopolysaccharide is required for leukocyte adhesion to Toraymyxin® filters used in the treatment of sepsis
EL Martin, B Assenzio, VM Ranieri

P7 Risk of neonatal septicemia associated with neonatal–maternal–bacterial determinants
M Douraghi, MN Rostami, H Goudarzi, M-M Soltandali, M Radfar, H Zeraati

P8 Age-associated changes in the inflammatory response to Gram-positive challenge of the lung
HM Linge, K Ochani, K Lin, EJ Miller

P9 A novel molecular biomarker diagnostic for the early detection of sepsis
D Venter, M Thomas, J Lipman, B Tang, A McLean, R Pascoe, G Price, T Nguyen, R Brandon, A Sutherland

P10 In vivo and in vitro role of cholecytokinin in nitric oxide
R Simone Saias, EC Cármino

P11 Sepsis induces platelet mitochondrial uncoupling and a gradual increase in respiratory capacity that is negatively associated with clinical outcome
F Sjövall, S Morota, MJ Hansson, H Friberg, E Gnaiger, E Elmér

P12 New sepsis related marker: endotoxin activity assay
T Ikeda, K Ikeda, H Taniuchi, M Hiramatsu, S Suda

P13 A fast and accurate diagnostic test for severe sepsis using model-based insulin sensitivity and clinical data
JD Parente, D Lee, J Lin, JG Chase, GM Shaw

P14 Serum procalcitonin as a diagnostic tool of bacteremia
A Kallinteri, I Katsoula, H Sakkas, E Papapetrou, E Kapsali, G Vrioni, A Mavridis, G Nakos, S Levidiotou

P15 Neonatal immune challenge impairs endotoxemic shock-induced hypotension: potential role for vasopressin
EC Cármino, D Cola, LGS Branco

P16 Neonatal LPS exposure reduces stress fever in adult rats: modulation by glucocorticoids and PGE2
LGS Branco, NR Soriano

P17 Innate immunity and inflammation in sepsis: mechanisms by which acute ethanol exposure alters the course of sepsis and the effect to TLR4 signaling
LGS Branco, NR Soriano

P18 Lipopolysaccharide alters expression of incretin receptors in mononuclear and hepatocytic cell lines
H Daabo, JWalters, J Gallagher, L Ranganath

P19 The new sepsis marker, sCD14-ST, induction mechanism in the rabbit sepsis models
K Shirakawa, K Naitou, J Hirose, M Nakamura, T Takeuchi, Y Hosaka, S Furusako

P20 Impact of delayed antimicrobial therapy in septic ITU patients
R Frost, H Newsham, S Parmar, A Gonzalez-Ruiz

P21 Estimating coagulopathy in an ovine acute lung injury model of sepsis using a disease progression model
BW Footer, S Rehberg, P Enkhbaatar, DM Parish, HM Linge, LD Traber, EJ Miller, DL Traber, JJ Schentag

P22 Overexpression of PD-1-related molecules is associated with lymphocyte anergy, mortality, and development of nosocomial infections in septic shock patients
C Guignani, F Venet, H Kherouf, A Ayala, A Lepape, G Monneret

P23 CCR2 drives neutrophil infiltration and elicits tissue damage in remote organs during sepsis
PO Souto, JC Alves-Filho, WM Turato, DC Nascimento, M Auxiliadora-Martins, A Basile-Filho, F de Queiroz Cunha

P24 Prospective multicenter study of the effect of early fluid resuscitation on trends in IL-6 and TNFα levels in severe sepsis
R Arnold, A Jones, N Shapiro, S Trzcinski, RP Dellinger

P25 Severity of illness scoring systems in community-acquired Legionella pneumonia
Ø Simonsen, J Ringstad
P26 Increased survival after a cecal ligation and puncture-induced sepsis in mice consuming oleic acid
IM de Moraes, F Magno, C Campbell, P Estevam, C Araújo, P Bozza, C Gonçalves-de-Albuquerque, A Silva, HCF Neto

P27 Anti-inflammatory effect of procalcitonin on in vitro LPS-stimulated human PBMC
A Foca, A Quirino, MC Pulicani, L Rametti, G Materia, MC Liberto

P28 Clinical effects of adsorption of lipopolysaccharide in the treatment of Gram-negative severe sepsis
V Kulabukhov, A Chizhov, A Kleuzovich, A Kudryavtsev

P29 Withdrawn

P30 Clinical impact of a multiplex real-time PCR assay (SeptiFast®) for the rapid detection of pathogens in patients with end-stage heart failure bridged to heart transplantation with ventricular assist devices
A Chaidaroglou, O Singh, Y Javeri, N Garg

P31 Extracellular metabolic alterations in critically ill septic patients studied by adipose tissue microdialysis
M Theodorakopoulos, N Nikitas, S Orfanos, D Vassiliadou, A Diamantakis, A Kotanidou, P Kopterides, N Maniatis, A Aragaginis, I Dimopoulo

P32 Two chromogranin A-derived peptides, chromofungin and catestatin, induce neutrophil activation via a store-operated channel-dependent mechanism
MH Metz-Boutigue, D Zhang, T Lavaux, F Schneider, D Aunis

P33 Withdrawn

P34 Cardiovascular hyporesponsiveness in sepsis is associated with G-protein receptor kinase expression via a nitric oxide-dependent mechanism
D Dal Secco, V Oliveron, T Corrêa, MR Celes, M Abreu, M Rossi, AM Oliveira, F Cunha, J Assreuy

P35 Kinetics of TREM-1 expression on canine neutrophils after in vitro and in vivo stimulation with microbial products
J Li, A Birkenheuer, M Levy, S Nordone

P36 Severe sepsis and its impact on outcome in old and very old patients admitted to the intensive care unit
D Juneja, O Singh, Y Javeri, N Garg

P37 Chromogranin A expression in plasma of critically ill patients
T Lavaux, F Schneider, C Bach, J-E Herbrecht, D Aunis, M-H Metz-Boutigue

P38 Chlamydophila pneumoniae infection in macrophages and in lung epithelial cells: IL-10 and the innate immunity response
JT Korhonen, R Lahesmaa, M Puelakkainen

P39 Influence of hydroxyethyl starch and gelatin versus crystalloids on renal function, fluid balance, and ICU length of stay in patients with severe sepsis
O Bayer, M Kohl, K Babisch, N Riedemann, U Settmacher, K Hekmat, M Bauer, K Reinhart, C Hartog

P40 Study of the Helicobacter pylori infection in Iranian patients with multiple sclerosis
N Sanadgol

P41 Incidence of bacteremia at the time of ICU admission and its impact on outcome
D Juneja, O Singh, G Singh, P Bajaj

P42 Differential kinetics of endothelial cell activation biomarkers E-selectin and endocan during nonlethal endotoxemia in 129Sv mice: a role for PMN-derived serine proteases in the transient decrease of circulating endocan levels
J Pastré, N De Freitas Caires, M Delehedde, A Scherpereel, E Parmentier, D Mathieu, P Lassalle

P43 Soluble TLT-1 is a naturally occurring TREM-1 inhibitor and protects mice from hyperresponsiveness and death during sepsis
M Derive, Y Bouazza, F Massin, C Alauzet, B Levy, P-E Bollaert, S Gibot

P44 Monoamino-oxidase-A function and potential benefit of its inhibition in sepsis
GP Otto, M Sossdorf, J Lemm, S Scholz, RA Claus, M Bauer

P45 Transcripts coding the VWF cleaving protease are decreased under proinflammatory conditions, which is reversed by co-incubation with activated protein C and selenate
F Conradi, CL Bockmeyer, M Sossdorf, MW Sieber, P Recknagel, MF Blaess, T Schürholz, W Lösche, M Bauer, RA Claus

P46 Gastrin-releasing peptide receptor antagonist induces a protection from lethal sepsis: involvement of Toll-like receptor 4 signaling
F Petronilho, F Felisberto, L Constantino, F Vuolo, F Cardoso, F Mina, CT de Souza, FG Soriani, EL Streck, C Ritter, JCF Moreira, R Roesler, G Schwartzmann, AV Schwall, F Dal-Pizzol

P47 System biology of multiple organ dysfunction: formation of a ceramide-enriched macro-domain in SIRS/sepsis – hyperresponsiveness of sphingomyelinase-deficient [AQ1]
I Suckert, GP Otto, P Urban, B Acht, MJ Dorer, AC Bunck, DC Hupe, M Bauer, RA Claus

P48 Predicting organ failure at 24 hours from early clinical data in an ovine pneumonia-sepsis model
BW Footer, S Rehberg, HM Linge, DM Parish, P Enkhbaatar, LD Traber, EJ Miller, DL Traber, JJ Schentag

P49 Modeling sepsis induced by methicillin-resistant Staphylococcus aureus infection: a human/ovine approach
JJ Schentag, S Rehberg, BW Footer, P Enkhbaatar, HM Linge, LD Traber, DM Parish, EJ Miller, DL Traber

P50 Identification of immune modulators using a phage library displaying Staphylococcus aureus secreted proteins
C Fevre, I van Strijp, P-J Haas
P51 Building up an infection control strategy based on the e-health concept
C Palos, A Pedrosa, J Mapril, C Alves

P52 Elimination of cytokine and soluble cytokine receptors by carbon sorbents from blood
N Anisimova, M Kiselevsky, E Gromova, L Kuznetzova

P53 Regulation of neutrophil chemotaxis by toll-like receptor 9 is important for sepsis survival
SC Trevelin, JC Alves-Filho, F Sonego, W Turato, D Nascimento, FO Souto, TM Cunha, R Gazzinelli, F de Queiroz Cunha

P54 Disruption of sarcolemmal dystrophin and β-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis
MR Celes, D Torres-Duenas, L Malvestio, V Belfar, E Campos, C Prado, F Cunha, M Rossi

P55 Endocan (endothelial cell-specific molecule-1) as a pertinent biomarker of endothelial dysfunction in sepsis
E Parmentier, N de Freitas Caires, B Grigoriu, J Pastré, A Palud, M Delehedde, D Mathieu, A Scherpereel, P Lassalle

P56 Epidemiological situation of Crimean-Congo hemorrhagic fever
S Chinikar, SM Ghiasi, M Moradi

P57 The effect of gender on cytokine syntheses and outcome of patients with severe sepsis
L Leonidou, A Mouzaki, V Kyriazopoulou, H Bassaris, C Gogos

P58 Withdrawn

P59 Success stories about pneumonia caused by Panton-Valentine Staphylococcus aureus
E Paramythiotou, E Frantzeskaki, E Dimitriadou, G Dimopoulos, I Tsangaris, G Tsakis, M Theodorakopoulou, A Armaganidis

P60 Clinical characteristics and coagulative state in patients with sepsis complicated with cavernous sinus thrombosis
M Gigauri, M Otiashvili, N Gigauri, E Goginashvili

P61 Withdrawn

P62 The expediency of different biomarkers’ use for diagnostics and monitoring of perinatal sepsis treatment of newborns with surgical pathology
G Khanes

P63 The experience of treatment of postoperative Gram-negative sepsis using specific immunoglobulin
G Khanes, L Parkhomenko

P64 Bacteremia caused by Enterococcus faecium and modifications in the antimicrobial resistance profile during the past 5 years
A Garcia-Tapia, F Galan-Sanchez, F Gil de Sola, P Marin, P Garcia-Martos, C Fernandez, M Rodriguez-Iglesias

P65 Sepsis and acute lung injury
M Javakhadze, M Gigauri, N Chincharadze1, M Daraselia

P66 Mycobacterium fortuitum endocarditis in 3 children after ventricular septal defect closure with bovine pericardial patch
I Cirkovic, M Svabic Vlahovic

P67 Impact of severity of sepsis at time of ICU admission on ICU mortality
D Juneja, O Singh, R Dang, P Nasa, M Gupta

P68 Obstetric gynecological sepsis in Georgia
M Daraselia, M Javakhadze, E Mgaloblishvili, M Gogelani

P69 Mental disorders in patients with sepsis
M Mammashvili, M Gigauri, T Bareladze, M Otiashvili, N Gigauri, GMammashvili

P70 Recombinant human soluble thrombomodulin (rhs-TM) may have an efficacy for sepsis not only for DIC
R Nagai, M Takeda, T Harada, M Abe, R Moroi, M Namiki, A Yaguchi

P71 Septic complications in hematological ICU: Epidemiology and antimicrobial resistance
V Vavilov, O Goloschapov, M Toropova, B Afanasiev

P72 Assessment of physiotherapy on ICU and effects of physiotherapeutic interventions on outcome of critically ill patients
Maik Soossdorf1, Gordon P Otto1, K Menge1, RA Claus, W Loesche1, M Kohl, K Reinhard, M Bauer

P73 Clinical peculiarities of Gram-positive sepsis
N Rukhadze, M Gigauri, M Kanashvili, M Mammashvili, T Bareladze, E Pachkoria, B Kanashvili

P74 Detection of Epstein Barr Virus in Iranian patients with multiple sclerosis
N Ramroodi

P75 Comparison of different modes of CVVHF in therapy of septic shock
V Kulabukhov, A Chizhov, A Kudyryavcev, A Kleuzovich, K Koreshkov

P76 Withdrawn

P77 Complement inhibition decreases the procoagulant response and provides organ protection in a baboon model of E. coli sepsis

P78 A new role of the alternative complement activation pathway for innate host defense during sepsis
K Dahlke, CD Wrann, O Sommerfeld, M Soossdorf, S Sachse, RA Claus, K Reinhard, M Bauer, NC Riedemann
Sepsis 2010

Paris, France. 1–3 September 2010

Published: 1 September 2010

P1 Epidemiology of sepsis in pediatrics: first Colombian multicenter pilot survey
J Camilo Jaramillo-Bustamante¹, A Marin-Aguedelo¹, M Fernández-Laverde¹, J Bareño-Silva¹
¹CES University, Pediatric Intensive Care Program, Medellin, Colombia; ²CES University, Epidemiology and Bio-statistic Research Group, Medellin, Colombia

Introduction In 2002, the Surviving Sepsis Campaign defined a strategy that aimed to reduce the high mortality due to sepsis. One point of this strategy was a recommendation to recognize that sepsis is a frequent cause of death and high economic costs in the pediatric intensive care unit. Knowledge of the disease is the first step to impact it. There are few studies on pediatric sepsis epidemiology in the world and none in Colombia.

Hypothesis The epidemiological features of Colombian children are different from other countries.

Methods We constructed a website where 14 intensive care units across the country reported in a prospective way the epidemiological features of children with sepsis using an electronic process [1]. We asked for sociodemographics, microbiological data, sepsis classification, complications, and outcome.

Results We collected 253 patients from March to May 2009. Fifty-five percent of the cases were male and 45% were female; 53% were less than 1 year old. A total of 67.2% came from urban areas and 33% came from rural villages. Eighty-five percent were very poor (score 1 and 2 over 6 used in Colombia as socioeconomic classification). Forty-five percent have government-supported insurance. In total, 23.72% of the population presented with sepsis; 30.04% with severe sepsis; and 46.5% with septic shock. The infection origin was respiratory in 54.53%, followed by abdominal in 17.39%. In 50.2% no cause was identified. A total of 75.1% required mechanical ventilation. The mortality rate was 20.4%.

Conclusions Sepsis, severe sepsis, or septic shock is a common diagnosis in Colombian intensive care units. The majority of pediatric patients are 2 years or younger and from the poorest communities. It affected males more. In the majority, the process starts in the respiratory system. We had difficulty identifying the cause. The disease causes high mortality and cost for a developing society. We need a complete survey to find a correct approach to the problem.

Reference
1. Sepsis en Columbia [www.sepsisencolombia.com]

P2 Randomized controlled trials are not designed to prove the safety of third-generation hydroxyethyl starch for resuscitation: results from a systematic review
CS Hartog, M Kohl, K Reinhart
Friedrich-Schiller-Universität Jena, Klinik für Anaesthesiologie und Intensivtherapie, Jena, Germany

Introduction Hydroxyethyl starch (HES) is widely used for volume therapy in intensive care. In critically ill and sepsis patients, HES use was dose-dependently associated with increased renal failure, tissue storage with organ failure, and increased long-term mortality. There are other safety concerns with regard to coagulopathy, pruritus, and mortality. However, third-generation HES 130/0.4 is considered to have an improved risk profile. Therefore, we wanted to assess whether published studies on HES 130/0.4 resuscitation are sufficiently well designed to draw conclusions about the safety of this compound.

Methods We derived clinically relevant outcome parameters to analyze safety outcomes from the literature and provided exemplary power calculations. Randomized controlled trials (RCT) on fluid resuscitation with HES 130/0.4 were systematically searched and analyzed for clinical condition, sample size, study duration, cumulative dose, control fluids, endpoints, and colloid–crystalloid volume ratios in studies with a goal-directed fluid regimen. Due to the heterogeneity of included studies, all analyses were descriptive (SPSS 17.0).

Results A total of 56 RCTs were included. Only two studies included severe sepsis patients, 80% were from the elective surgical setting and one study from the emergency surgical setting. In general, studies were underpowered (median sample size 25 patients in HES 130/0.4 groups, range 10 to 90 patients); of short duration (median study period 12 hours, range 0.5 to 144 hours) and with low cumulative HES doses (median 2,465 ml, range 328 to 6,229 ml). Sepsis studies (n = 2) included 18 patients (median, range 10 to 26 patients), study period was 96 hours (median, range 72 to 120 hours) and total fluid volumes was 3,000 ml in one study. Sixty percent of control fluids were synthetic colloids (other starches, gelatins, or dextran) that carry a similar risk profile. Primary endpoints with power calculation (in 87% of studies) were mostly unspecific or clinically irrelevant. Only one sepsis study provided a primary endpoint, which was extravascular lung water. This did not differ in comparison with the albumin 20% control group.

Conclusions There is no reliable evidence from published clinical data that third-generation HES 130/0.4 is safe in septic patients or in the emergency or elective surgical setting.

P3 Effect of canine hyperimmune plasma on TNFα and inflammatory cell levels in a lipopolysaccharide-mediated rat air pouch model of inflammation
BE Essen, M Kotiw, H Butler, D Strunin
University of Southern Queensland, Centre for Systems Biology, Toowoomba, Australia

Introduction Unregulated elevated levels of serum TNFα have been associated with proinflammatory cytokine cascades, which are characteristic in diseases such as septic shock. Endotoxic shock, which has a poorer prognosis than found with other forms of septic shock, is mediated by lipopolysaccharide (LPS), a molecule that is released from the outer membrane of Gram-negative bacteria. LPS is a potent stimulator of TNFα secretion by serum monocytes and tissue macrophages. While the use of monoclonal therapeutic TNFα antagonists has been tried, none has been registered for use in patients with sepsis.

Objective The purpose of this study was to test the effect of canine hyperimmune frozen plasma (HFP), which is known to contain elevated levels of soluble TNFα receptor 1 (sTNFRI), on TNFα and inflammatory cell levels in a LPS-mediated rat air pouch model of inflammation.

Methods A dorsal air pouch in 175 to 200 g Sprague–Dawley rats was formed by 20 ml subcutaneous infusions of sterile air. Prophylactic subcutaneous injections of canine HFP, canine fresh-frozen plasma (FFP), or carprofen...
were administered daily for 3 days into the lateral flank of the right foreleg at doses recommended by the manufacturers (n = 10 for each treatment group). Pouch fluid was harvested by syringe at 1, 6, 12, 24, and 48 hours post LPS administration and subjected to histological and cytokine/cytokine receptor analysis. TNFα and sTNFR1 levels were determined by ELISA and an immunofluorescent dot blot assay.

Results Pouch fluid analysis: maximal effects were detected at 6 hours post LPS administration. TNFα levels were significantly depressed in animals dosed with HFP, but not in animals treated with FFP or carprofen (P < 0.05). sTNFR1 levels were significantly elevated in HFP, but not in FFP or carprofen-dosed animals (P < 0.05). Neutrophil numbers were significantly depressed in HFP-dosed, but not in FFP-treated or carprofen-treated animals (P < 0.05).

Conclusions There appears to be a correlation between elevated levels of sTNFR1 and depression of TNFα and neutrophil levels in the pouch fluid of HFP-dosed rats (r = −0.73, P < 0.0001). The data suggest that canine HFP, which has been demonstrated to contain elevated levels of sTNFR1 compared with FFP, has a direct effect on depressing TNFα levels and neutrophil sequestration in the rat air pouch model of inflammation. These data suggest that HFP may be worthy of further investigation to determine whether such preparations have a therapeutic potential for treatment of acute inflammatory diseases in which TNFα is implicated.

P4 Development of *Klebsiella pneumoniae* B5055-induced mouse model of sepsis-associated brain inflammation in BALB/c mice

V Kumar1, A Sharma2

1Dr Y.S. Parmar University, Microbiology, Himachal Pradesh, India; 2Saint-Justine Hospital, University de Montreal, Medicine, Montreal, Canada

Introduction Incidence of sepsis is continuously increasing in the developing as well as the developed world. Severe sepsis is associated with the development of multiorgan dysfunction syndrome. In addition to other vital organs (that is, lungs, kidneys, heart, or liver), the brain is one of the severely affected organs in sepsis. Autopsy studies from septic patients reveal various cerebral lesions including ischemia, hemorrhage, microthrombi, microabscesses, multifocal necrotizing leukoencephalopathy, and bacterial invasion of the nervous system. Until now no animal model of sepsis has been developed that in a true sense represents the brain inflammation associated with evolving sepsis originating from Gram-negative bacteria. This study comprises development of a mouse model of sepsis-induced brain inflammation.

Methods A mouse model of sepsis-associated brain inflammation was developed by directly placing a selected dose (10⁷ cfu) of *Klebsiella pneumoniae* B5055 entrapped in a fibrin–thrombin clot into the peritoneal cavity of mice, while in control group animals only a sterile fibrin clot was kept. Various inflammatory cytokines (that is, IL-1α and TNFα) and other inflammatory markers (that is, malondialdehyde, myeloperoxidase and nitric oxide) in serum and brain were estimated by ELISA, biochemical methods, and histopathology in both the experimental groups.

Results Bacterial colonies were found to be established in brain on the very first day of sepsis induction in experimental group but no bacteria were observed in sham-operated animals. Along with this, a significant (P < 0.05) increase in neutrophil infiltration into the brain along with significantly (P < 0.05) increased levels of proinflammatory cytokines (TNFα and IL-1α) and other inflammatory mediators like nitric oxide, malondialdehyde, and myeloperoxidase were observed in animals with sepsis. Also the septic animals survived until the 5th day of post-sepsis development, while 100% survival was observed in the sham-operated group on all experimental days without any inflammatory change in the brain as observed by histopathologic examination and estimating the above-mentioned inflammatory parameters.

Conclusions This mouse model of sepsis-induced brain inflammation may prove helpful to study immunopathogenesis of brain inflammation observed during Gram-negative bacterial sepsis and may also prove helpful to study neuroimmunology of sepsis along with behavioral changes associated with sepsis.
or vs. non-incubated LPS, P = 0.03). Pre-exposure of Toraymyxin® filters to LPS versus vehicle control increased leukocyte adhesion, both for blood alone (7.60 ± 1.51-fold increase, P = 0.004) or blood incubated with LPS (24.43 ± 5.32-fold increase, 7.55 ± 1.08-fold increase, P = 0.019). Moreover, while the presence of TNFα or low levels of LPS did not induce leukocyte binding to Toraymyxin® filters, increasing LPS concentrations induced a dose-dependent increase in adhesion (Figure 1). Sterile blood was confirmed by EAA to have low endotoxin activity (EAA™ <0.3), while blood containing Toraymyxin® and LPS versus vehicle control increased leukocyte adhesion, both for blood alone (24.43 ± 5.32-folds vs. 7.55 ± 1.08 folds) and blood incubated with LPS (24.43 ± 5.32-fold increase, 7.55 ± 1.08-fold increase, P = 0.019). Moreover, while the presence of TNFα or low levels of LPS did not induce leukocyte binding to Toraymyxin® filters, increasing LPS concentrations induced a dose-dependent increase in adhesion (Figure 1). Sterile blood was confirmed by EAA to have low endotoxin activity (EAA™ <0.3), while blood containing 700 ng/ml LPS had high endotoxin activity (EAA™ = 0.8).

Conclusions While leukocyte activation by LPS increases their adhesion to Toraymyxin® filters, the activation of leukocytes by TNFα did not alter binding, indicating the essential need for the presence of LPS possibly as a bridging molecule in the mechanism responsible for the removal of leukocytes during extracorporeal hemoperfusion with Toraymyxin® filters.

P7 Risk of neonatal septicemia associated with neonatal–maternal–bacterial determinants
M Douraghi1; MN Rostami2; H Goudarzi3; M-M Soltandallal4; M Radfar5; H Zeraati6
1Shahid Beheshti University of Medical Sciences, Department of Microbiology, Faculty of Medicine, Tehran, Iran; 2Qom University of Medical Sciences, Department of Public Health, Qom, Iran; 3School of Public Health, Tehran University of Medical Sciences, Department of Bacteriology, Tehran, Iran; 4Shahid Beheshti University of Medical Sciences, Neonatal Intensive Care Unit, Imam Hossein Hospital, Tehran, Iran; 5School of Public Health, Tehran University of Medical Sciences, Department of Epidemiology and Biostatistics, Tehran, Iran Critical Care 2010, 14(Suppl 2):P7 (doi: 10.1186/cc9110)

Introduction The triad interaction of neonatal–maternal–bacterial determinants plays a crucial role in the increased incidence of bacterial sepsis during the neonatal period. This study was undertaken to determine whether neonatal–maternal predisposing factors and bacterial pathogens affect the risk of early or late onset sepsis.

Methods Three hundred neonates in the NICU of two hospitals in Tehran were studied. Blood cultures from neonates with suspected sepsis were performed on BHI broth followed by identification of isolates and testing for their susceptibility to antimicrobial agents. Collectively, neonatal and maternal risk factors such as birth weight, gestation age, PROM, Apgar score, and others were studied in the cultures of proven cases of neonatal sepsis. In univariate binary logistic regression models, the impact of neonatal and maternal factors on sepsis risk was estimated in terms of odds ratio (OR) with 95% confidence interval (CI).

Results The present study revealed the impact of bacterial pathogens and neonatal and maternal predisposing factors on sepsis as follows. Bacterial pathogens: 14/300 (4.7%) of neonates developed septicemia. Among infected neonates, 64.3% and 35.7% were considered with early-onset and late-onset sepsis, respectively. The most isolated Gram-negative organism was Stenotrophomonas maltophilia (42.8%) followed by Klebsiella pneumonia (28.6%), Escherichia coli (21.4%) and Serratia liquefaciens (7.2%). Neonatal factors: the mean age of neonates ± SD with early-onset sepsis (1.56 ± 0.88) was lower than that of those with late-onset sepsis (10.40 ± 5.50) and this difference was statistically significant (P <0.05). Low birth weight (LBW) <2,500 g increased the risk of sepsis to more than twofold (OR = 2.9, 95% CI = 1.17 to 9.86; P <0.01). Gestation age (GA) <29 weeks was significantly associated with sepsis (P <0.01). The septicaemia, in turn, increased the risk of death up to more than fivefold (OR = 5.5; 95% CI = 1.98 to 15.3; P <0.01). More than one-half of septic neonates had positive result for CRP whereas only 1.9% of neonates with sepsis were CRP-negative, and this difference was statistically significant (P <0.001). Maternal factors: PROM affected the sepsis risk to more than threefold (OR = 3.8; 95% CI = 1.37 to 10.56; P <0.05).

Conclusions The present study reveals that specific neonatal and maternal factors are associated with increased risk of sepsis. Among the studied factors, prematurity of neonates explained as GA and LBW are the most important contributors to morbidity in neonate who suffered from sepsis. Furthermore, PROM as a maternal risk factor predisposes a child to neonatal sepsis.

P8 Age-associated changes in the inflammatory response to Gram-positive challenge of the lung
HM Linge, K Ochani, K Lin, EJ Miller
Feinstein Institute for Medical Research, Cardiopulmonary Research, Manhasset, NY, USA Critical Care 2010, 14(Suppl 2):P8 (doi: 10.1186/cc9111)

Introduction Mortality from sepsis is greater in the elderly than in the young although incidence only increases slightly. Pulmonary infections caused by Staphylococcus aureus is a common precipitating cause of sepsis. Gram-positive bacteria are increasing as causative agents of pneumonia in the elderly.

Objective To investigate age-dependent changes in the intrapulmonary response to staphylococcal challenge.

Methods Cell wall components lipoteichoic acid (LTA, 200 ng) and peptidoglycan (PGN, 660 ng) from S. aureus were instilled intratracheally to young (3 to 4 months) and old (>18 months) C57Bl6 mice (n = 5/group). Controls received saline alone. After 6 hours, mice were euthanized by exsanguination, and blood saved for analysis. One-sided lavage was performed, the nonalvaged lung tissue collected and total RNA isolated.

Results Using this relatively mild challenge of LTA and PGN, we observed significant and age-dependent differences in the inflammatory response. Macrophage migration inhibitory factor (MIF) protein was significantly and age-dependently increased in BAL and plasma. A trend toward lower levels of total cells and neutrophils in the lung was noted in the old following stimulation, although the variation of the response was large. The dynamics of MIF at a transcriptional level in the lung was age-dependently altered, with a marked downregulation in the young mice after stimulation, whereas levels of MIF mRNA remained unchanged in the old mice. Transcriptional changes were also noted for the anti-inflammatory cytokine IL-10 and other mediators involved in lymphocyte, macrophage and neutrophil recruitment. Interestingly, explanted lung cells from young and old mice showed a similar expression pattern, with atypical expression levels in cells originating from old mice lungs.

Conclusions The findings support a hyperinflammatory response in the older individual at the measured time point. Interestingly, the differences were sustained in vitro in cells explanted from young and old mice. Together the data suggest an altered inflammatory response to infectious challenge of the aged lung. Explanted cells from old animals may be a valuable tool in determining age-dependent differences in inflammatory response and identifying novel targets for intervention.

P9 A novel molecular biomarker diagnostic for the early detection of sepsis
D Venter1; M Thomas2; J Lipman1; B Tang1; A McLean1; R Pascoe3; G Price1; T Nguyen1; R Brandon1; A Sutherland1
1Mater Adult Hospital, Pathology, Brisbane, Australia; 2Aithomics Pty Ltd, Immunobiology and Bioinformatics, Brisbane, Australia; 3Royal Brisbane & Women's Hospital, Intensive Care Medicine, Brisbane, Australia; 4Nepean Hospital, Intensive Care Medicine, Sydney, Australia; 5Wesley Hospital, Intensive Care Medicine, Brisbane, Australia Critical Care 2010, 14(Suppl 2):P9 (doi: 10.1186/cc9112)

Introduction Sepsis is a complex immunological response to infection characterized by a sinusoidal pattern that represents early hyperinflammatory...
signals [1] followed by severe and protracted immunosuppression, suggesting that a multimarker approach has the greatest clinical utility in early detection within a clinical environment focused on SIRS differentiation. Preclinical research using an equine endotoxemia model identified a panel of gene expression biomarkers that define the aberrant immune activity during early sepsis. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing.

Methods This was a multicenter, prospective clinical trial conducted across four tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement [2] and had clinical evidence of systemic infection based on microbiology diagnoses (n = 27). Participants in the post-surgical (PS) group were recruited preoperatively and blood samples collected within 24 hours following surgery (n = 36). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n = 19). Each participant had minimally 5 ml of gene blood collected for RNA isolation and gene expression analyses. Affymetrix Exon arrays and multiplex cytokine (MT)-PCR studies were conducted to evaluate gene expression using a set of molecular markers that had been identified a priori. A LogitBoost algorithm was used to create a machine-learning diagnostic rule in which to predict sepsis outcomes.

Results Based on preliminary exon array analyses comparing HC and sepsis groups, a panel of 42 gene expression markers was identified that linked to key innate immunity, cell cycle, endothelial, coagulation, and apoptotic pathways. When sepsis and PS groups were combined, the test had an ROC area >95%. Using subsets of these biomarkers in the MT-PCR assay, the ROC AUC for sepsis prediction was between 85 and 90%.

Conclusions This novel molecular biomarker test has a clinically relevant sensitivity and specificity profile, and has the capacity for early detection of sepsis via the monitoring of critical care patients.

Acknowledgements DV is Director and Shareholder, Athlomics Pty Ltd. MT is Shareholder, Athlomics Pty Ltd. RB is Shareholder, Athlomics Pty Ltd. AS is Research Consultant, Athlomics Pty Ltd.

References

Introduction Nitric oxide (NO) plays a key role in innate immune system controlling microbial infection; however, during septic shock its exacerbate formation is associated with several deleterious complications. Cholecystokinin (CCK) was first described as a gastric regulatory hormone, but immune cells express their receptor, suggesting a possible involvement of this hormone in modulation of inflammatory response. Our aim was to evaluate the role of CCK on NO production during endotoxemia in rats as well as lipopolysaccharide (LPS)-stimulated macrophages.

Methods Male Wistar rats received an intravenous injection of CCK (0.4 and 40 μg/kg) 10 minutes before LPS (1.5 mg/kg), administration. The mean arterial pressure was monitored during 6 hours after endotoxin injection. Blood was collected for plasma nitrate level and vasopressin measurement at 2, 4 and 6 hours after LPS. Thioglycollate–elicited macrophages were obtained by peritoneal lavage and cultured in RPMI 1640 medium, supplemented with 10% fetal bovine serum and antibiotics. Macrophage culture was treated with CCK (10⁻⁴, 10⁻³, 10⁻², 10⁻¹, 10⁰ M) 30 minutes before LPS stimulation (1 μg/ml) and supernatant nitrite concentration was determined at 6, 24 and 48 hours. The INOS expression was evaluated by quantitative real-time PCR and the amount of gene transcription was measured using the delta–delta method. The presence of INOS was analyzed by indirect immunofluorescence at 12 and 24 hours after LPS incubation.
Conclusions

The endotoxin activity assay (EAA) is a rapid whole-blood chemiluminescence test for endotoxin that has proven clinical utility in the detection and risk stratification of clinically ill patients with suspicion of sepsis.

Methods

The EAA was studied in a cohort of 153 septic patients admitted to the ICU. At the same time, IL-6 (chemiluminescent enzyme immunoassay), C-reactive protein (CRP), procalcitonin (PCT, chemiluminescent enzyme immunoassay) and plasminogen activator inhibitor-1 (PAI-1, latex photometric immunoassay) were measured within 24 hours after ICU admission. The patients were divided into the following three groups: L group: EAA <0.4, M group: 0.4 ≤EAA <0.6, H group: 0.6 ≤EAA. Normal range measures ANOVA was used to compare over three groups or conditions. Statistical significance was assumed for values of $P < 0.05$. Normally distributed data are presented as mean ± SD, and abnormally distributed data are presented as median values.

Results

Of the 153 patients, the L group contained 61 patients, and the M group contained 41 patients, and the H group contained 51 patients, respectively. On the day of ICU admission, the rate of EAA ≥0.4 was 60.1% (MEDIC study: 57.2%). APACHE score in the L group was 21.0 ± 7.9, M group 24.8 ± 8.4, H group 26.4 ± 8.9, and SOFA score in the L group was 8.2 ± 4.3, M group 8.9 ± 4.1, H group 9.5 ± 4.3, respectively. There was no statistically significant difference among the groups. The median value of PCT in the L group was 1.1 ng/ml; M group 5.9 ng/ml, H group 8.5 ng/ml, respectively. PCT values of the M and H groups were significantly higher than those of the L group. Median IL-6 level of the H group was significantly higher than that of the L group (H group: 2,635 pg/ml, L group: 177 pg/ml).

Conclusions

EAA has no significant correlation with other sepsis-related markers, but may be associated with body insults (inflammation or infection).

Figure 1 (abstract P13).

Results

A biomarker including concurrent insulin sensitivity and clinical data for real-time diagnosis of severe sepsis (ss ≥2) achieves 69 to 94% sensitivity, 75 to 94% specificity, 0.78 to 0.99 AUC, 3 to 17 LR+, 0.06 to 0.4 LR-, 9 to 36% PPV, 99 to 100% NPV, and 7 to 261 DOR for optimal probability cutoff values of 0.32 and 0.27 for in-sample and out-of-sample data, respectively. The overall result lies between these minimum and maximum error bounds. See Figure 1.

Conclusions

The clinical biomarker shows good to high accuracy and may provide useful information as an early real-time diagnostic test for severe sepsis.

Reference

P14

Serum procalcitonin as a diagnostic tool of bacteremia

1 Medical School, University of Ioanna, Department of Microbiology, Ioanna, Greece; 2 Medical School, University of Athens, Department of Microbiology, Athens, Greece; 3 Medical School, University of Ioanna, Department of Intensive Care Unit, Ioanna, Greece

Introduction

Procalcitonin (PCT) is a highly specific marker of severe bacterial infections and organ failure due to sepsis. The aim of the present study was to determine the diagnostic value of serum PCT in ICU patients with bacteremia caused by either Gram-negative or Gram-positive bacteria.

Methods

During this prospective study, PCT levels were measured in 163 adult patients with proven systemic monobacterial infections. Bacteremia was defined as the recovery of any bacterial species and for coagulase-negative Staphylococcus (CONS) the species that were included were those harboring the same antibiotic pattern grown from at least two consecutive samples. Blood for PCT levels and culture was drawn simultaneously at the onset of bacteremia. Eighty-eight episodes of bacteremia were caused by Gram-negative bacteria: Staphylococcus aureus 12, CONS 56, Enterococcus spp. 13, Streptococcus pneumoniae 3, Clostridium perfringens 1 and Corynebacterium acnes 3. The remaining 75 episodes of bacteremia were caused by Gram-negative bacteria: Escherichia coli 16, Klebsiella pneumoniae 19, Pseudomonas aeruginosa 15, Acinetobacter baumannii 24, and Seratia marcescens 1. Serum PCT was estimated with an assay based on immunochemiluminescence (BRAHMS Diagnostica, Berlin, Germany).
Results According to our results, PCT levels in all patients with bacteremia caused by Gram-negative bacteria (75/75) were >2 ng/ml. In more details in 41 patients with Gram-negative bacteremia (54.7%) the PCT levels were 2 to 10 ng/ml and in 34 patients (45.3%) >10 ng/ml while in patients with CNS bacteremia the PCT levels were >2 ng/ml only in 14% (6/56). In addition, in all patients with bacteremia caused by S. aureus the PCT levels were >2 ng/ml and by Streptococcus spp., C. perfringens, and C. acnes the PCT levels were 2 to 10 ng/ml.

Conclusions PCT levels were markedly higher in patients with bacteremia associated with Gram-negative bacteria than in those with Gram-positive bacteremia, especially caused by CNS. Future research is needed to confirm our results.

P15 Neonatal immune challenge impairs endotoxin shock-induced hypotension: potential role for vasopressin
EC Carro, D Cão, LGS Branco
Universidade de São Paulo, Department of Physiology, Ribeirão Preto, Brazil

Administration of bacterial cell wall component lipopolysaccharide (LPS) stimulates the immune and endocrine systems, inducing acute phase of sickness and stress responses. Neonatal LPS exposure has been shown to alter many aspects of adult physiology, including neuroendocrine, neurochemical, and febrile responses. The aim of this study was to evaluate the effects of neonatal immune challenge on adults during septic shock-like condition assessing mean arterial pressure and heart rate, plasma vasopressin (AVP) concentration, body temperature (Tb), and macrophage nitric oxide (NO) synthesis. Male Wistar rats were exposed to LPS (100 µg/kg i.p.; nLPS) or saline administration (nSal) 14 days after birth (P14). On day 50 after birth, endotoxemic shock was induced by intraperitoneal injection of 10 mg/kg LPS, on rats previously implanted with polyethylene catheters in the femoral artery and loggers for Tb measurements. A different set of animals was used to assess the effect of neonatal LPS exposure on NO synthesis by peritoneal macrophage in vitro, with (1 µg/ml) or without LPS, added to the culture. In nSal rats, LPS injection induced a transitory increase in AVP plasma concentration, a decrease in mean arterial pressure with a concomitant increase in heart rate, which were statistically significant from 1 hour (P <0.01) up to 6 hours (P <0.001) after treatment. LPS-induced hypothermia (P <0.05) was observed for 2 hours after LPS administration, and was followed by an increased Tb (P <0.01). We also observed a significant increase in nitrate plasma concentration as well as in macrophage culture medium after LPS stimulation. In nLPS rats we observed an attenuation to the development of hypotension, no significant change in heart rate (P >0.05), an increased hypothermia, and a decreased febrile response, and further increased (P <0.01) AVP plasma levels were observed, in response to LPS administration. Interestingly, nitrite released in the culture medium was attenuated in nLPS animals. Neonatal exposure to LPS induces attenuation in hypotension during septic shock-like conditions and this response may be linked to an inhibitory effect of glucocorticoids on cyclooxygenase activity/PGE production in the preoptic/anteroventral third ventricular area (AV3V) since stress failed to cause a significant increase in PGE, in nLPS rats, and this effect was reverted by adrenalectomy. Altogether, the present results indicate that endogenous glucocorticoids are key modulators of the attenuated stress fever in adults rats treated with LPS as neonates, and that they act downregulating PGE production. Moreover, our findings also support the notion that neonatal immune stimulus affects programming of stress responses during adulthood, despite the fact that inflammation and stress are two distinct processes mediated largely by different neuroendocrine mechanisms.

Acknowledgements Supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Universidade de São Paulo (USP).

P17 Innate immunity and inflammation in sepsis: mechanisms by which acute ethanol exposure alters the course of sepsis and the effect to TLR4 signaling
B Jan, W Tan, X Deng, M Gadson, S Pruett
Mississippi State University, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State, MS, USA

Introduction Alcohol consumption is a significant risk factor for mortality in patients with sepsis. Alcohol is the most widely abused substance worldwide and numerous studies have revealed that it has widespread effects on the immune system and leaves abusers at increased risk of a variety of infections. An increased predisposition to infection among patients with alcohol use problems may also mediate an association with sepsis.

Objective The present study was carried out to investigate the mechanisms by which acute ethanol exposure alters the course of sepsis and the effect of TLR4 signaling.

Methods Two different strains of mice, C3H/HeJ (TLR4-mutants) and C3H/HeOuJ (wildtype), were treated with a dosage of 6 g/kg ethanol, which yields a blood-ethanol concentration of ~0.4%, similar to the blood-ethanol levels that occur in ethanol-dependent humans. Viable, indigenous Escherichia coli, log-phase, grown in LB broth was administered intraperitoneally. The dosage of E. coli was 2 × 10⁸ per mouse, which serves as a model for loss of intestinal integrity and release of bacteria in large numbers. Blood samples were obtained retro-orbitally while the animal was under halothane anesthesia. After euthanasia, peritoneal lavage was performed and samples of this fluid were used to quantify bacteria by making serial dilutions in LB agar, and for cell-counting, for cytokin and cytokine and chemokine study. Spleen was also harvested from all the mice for carrying out bacterial quantification, RNA analysis, and flow-cytometry analysis.

Results Ethanol administration decreases resistance to E. coli and causes a decrease in the ability to clear bacteria both from the peritoneal cavity as well as the spleen. At early time points, ethanol also suppresses the production of proinflammatory cytokines (for example, IL-1, IL-17, INFγ, TNFα, and so forth) and chemokines (for example, Eotaxin, RANTES, MCP-1, MIG, LIX, and so forth). Most (80 to 90%) of the cells in the peritoneal cavity were found to be macrophages (full of bacteria) and hardly any neutrophils could be found. See Figure 1.

Conclusions Ethanol decreases clearance of bacteria in the peritoneal cavity and increases mortality. Ethanol also decreases production of most proinflammatory cytokines and chemokines. A large number of macrophages in the peritoneal fluid indicates decreased attraction of neutrophils to the

Figure 1 (abstract P17). Survival of TLR4 mutant (HeJ) versus wildtype mice.
peritoneal cavity, decreased clearance of bacteria by macrophages and neutrophils in the peritoneal cavity, and, hence, increased mortality. TLR4 is dispensable for survival in E. coli sepsis but it also contributes to lethality in wildtype mice. Although TLRs have been implicated as an important element of host defense against infections, evidence indicates that these receptors may also play a crucial role in the pathophysiology of sepsis.

P18 Lipopolysaccharide alters expression of incretin receptors in monocytic and hepatocytic cell lines

H Daabo, J Wolters, J Gallagher, L Ranganath
University of Liverpool, Department of Human Anatomy & Cell Biology, Liverpool, UK; University of Liverpool, Department of Critical Care Research Unit, Liverpool, UK

Introduction Sepsis hyperglycemia is poorly understood. It is not known whether there is a role in sepsis hyperglycemia for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinoemotrop peptide (GIP), crucial for normal glucose metabolism. We developed an in vitro model of sepsis employing monocytic (crucial cells in mediating sepsis) and hepatocytes (crucial cells in carbohydrate homeostasis) to clarify the role of the incretin system in sepsis.

Objective To establish an in vitro model of sepsis employing monocytic (U937) and hepatocytic (HUH7) cell lines by co-incubation with lipopolysaccharide (LPS) and to determine whether receptor expression for GIP, GLP-1, and insulin (INS) was altered.

Methods U937 (monocyte cell line) and HUH7 (hepatocyte cell line) cells were cultured with different concentrations of LPS for 24 hours. Real-time RT-PCR quantitation of gene expression was used to compare the rates for relative expression.

Results U937 and HUH7 cells expressed mRNA GIPR (including GIPR protein expression in HUH7 cells), and INS, but only HUH7 expressed GLP-1R. There was an inverse relationship between the LPS dose and mRNA expression for GIPR (P < 0.05). For example at 5 μg/ml LPS, the expression of GIPR was reduced to 86% and INS 72% of control (P < 0.05). For example at 5 μg/ml LPS, the expression of GIPR was decreased to 63%, GLP-1R 95% and INS 89% compared with control (P < 0.001). A direct significant relationship between LPS and inflammatory cytokines IL-1 (P < 0.05) and IL-6 (P < 0.05) in both cell lines validated our model.

Conclusions We not only show for the first time GIPR mRNA expression on U937 cells and expression of GLP-1R in hepatocyte cell line, but also their downregulation with LPS. The LPS-mediated alteration in incretin receptor expression on these cell lines may be relevant to changes in cytokine secretion and carbohydrate metabolism in sepsis.

P19 The new sepsis marker, sCD14-ST, induction mechanism in the rabbit sepsis models

K Shinkawa, K Naitou, H Hirose, M Nakamura, T Takeuchi, Y Hosaka, S Furusako
Mochida Pharmaceutical Co., Ltd, Pharmaceutical Research Center, Gotemba, Japan

Introduction Soluble CD14 subtype (sCD14-ST) is a fragment of CD14 and is markedly increased in sepsis patients. We developed a new immunoassay to detect sCD14-ST and evaluated the efficacy of this marker for diagnosis of sepsis. For developing the strategies of sCD14-ST as a sepsis diagnostic marker, the induction mechanism must be known.

Methods To determine the kinetics of sCD14-ST in the rabbit endotoxin shock model and the cecal ligation and puncture (CLP) model, we prepared appropriate antimicrobial therapy be administered within 1 hour following recognition of severe sepsis [4].

Methods We conducted a prospective audit of consecutive patients with severe sepsis admitted to an ITU between February and June 2010. The patients were identified as those who fulfilled two or more components of the systemic inflammatory response syndrome (SIRS) criteria, and had evidence of organ dysfunction requiring critical care. Compliance to the Surviving Sepsis Campaign’s antibiotic care bundle was audited. The relationship between time of antibiotic administration and mortality was also determined.

Results During the study period, 33 patients out of 187 admissions met the inclusion criteria. The population demographics are illustrated in Table 1. The mean time from fulfilling SIRS criteria to delivery of antibiotic was 4.32 hours. Only eight (25%) of the patients received antibiotics within the 1 hour timeframe.

Table 1 (abstract P20). Demographic characteristics of 33 patients with septic shock treated in an ICU

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>62.1</td>
</tr>
<tr>
<td>Male gender</td>
<td>20 (65)</td>
</tr>
<tr>
<td>Deaths</td>
<td>11 (33)</td>
</tr>
<tr>
<td>Source of sepsis</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td>21 (75)</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>5 (15)</td>
</tr>
<tr>
<td>Intra-abdominal</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (6)</td>
</tr>
<tr>
<td>SIRS criteria</td>
<td></td>
</tr>
<tr>
<td>Temperature >38 or <36°C</td>
<td>16 (49)</td>
</tr>
<tr>
<td>HR >90 bpm</td>
<td>33 (100)</td>
</tr>
<tr>
<td>RR >20/min or PCO₂ <4.3 kPa</td>
<td>26 (78)</td>
</tr>
<tr>
<td>WBC >12 or <4 x10⁹/mm³</td>
<td>24 (72)</td>
</tr>
<tr>
<td>>2 SIRS criteria</td>
<td>33 (100)</td>
</tr>
<tr>
<td>Systolic BM <90 mmHg</td>
<td>17 (51)</td>
</tr>
<tr>
<td>Lactate >4 mol/l</td>
<td>5 (15) (unrecorded 36%)</td>
</tr>
<tr>
<td>Organ dysfunction</td>
<td>28 (64)</td>
</tr>
</tbody>
</table>
hour, with the mortality rate for this group being 25%. Those patients who received antibiotics after 4 hours had a lower mortality rate than the group that received antibiotics after 12 hours (67% vs. 80%). See Figure 1.

Conclusions Our results support published evidence that a delay in antibiotic delivery greater than 1 hour is associated with increased mortality in patients treated in the ITU. As a result of this study we have developed a standardized sepsis protocol to integrate into the AE triage as well as a pathway to help instigate treatment earlier to those patients identified as septic on the wards. Recruitment period has not concluded. More data analysis will be presented later.

References
2. Intensive Care National Audit and Research Centre [https://www.icnarc.org/]

P21
Estimating coagulopathy in an ovine acute lung injury model of sepsis using a disease progression model
BW Foote1,2, S Rehberg, P Enkhiabart, DM Parish1, HM Linge1, LD Traber1, EJ Miller1, DL Traber1, JJ Schentag1,2
1University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA; 2CPL Associates LLC, Buffalo, NY, USA; 1The University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX, USA; 2The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, USA

Introduction Acute lung injury (ALI) caused by smoke inhalation with or without bacterial pneumonia remains a significant cause of morbidity and mortality among burn patients. Bacterial pneumonia in an ALI patient is particularly worrisome because it often leads to sepsis. Although much of the literature surrounding ALI and pneumonia-induced sepsis has rightfully focused on pulmonary and endothelial changes, a major consequence of ALI and an area of continued research and drug development is coagulopathy. The objective, therefore, of our study was to determine whether coagulopathy differs between types of ALI and whether the dysregulation can be estimated using a disease progression model.

Methods Nineteen sheep with acute lung injury were incorporated into this pneumonia-sepsis model. Pneumonia was induced by inoculating the sheep with Staphylococcus aureus (MRSA), while smoke injury was created through inhalation of cotton smoke. The injury groups studied were as follows: MRSA untreated (M), MRSA treated (M+T), and smoke inhalation only (S). Data were modeled over 24 hours. First, all the sheep were modeled together to determine a rank-order of the injury groups. After rank-ordering the groups, the groups became model inputs and in conjunction with other clinical and laboratory variables were used to estimate the output parameter, prothrombin time (PT). In order to minimize overparameterization of a small patient population, the model was allowed to estimate PT using only two parameters.

Results The number of sheep in each group was as follows; seven M+S, three M, three M+T, and six S. The rank-order of injury from least to greatest severity was M+T, S, M, M+S. The two highest-ranking parameters in estimating PT were calcium and injury. When using calcium and injury alone, the model estimate agreement with measured PT was $r^2 = 0.70$ and $r = 0.36$, respectively. Allowing the model to combine the inputs did not improve the model estimate ($r^2 = 0.70$) compared with when calcium was used alone.

Conclusions The progression model allowed all individual sheep to be characterized as to the severity of resulting coagulopathy and identified some important co-factors. Acute lung injury can lead to systemic coagulopathy even without MRSA infection, but the extent and severity is greater with infection.

P22
Overexpression of PD-1-related molecules is associated with lymphocyte energy, mortality, and development of nosocomial infections in septic shock patients
C Guignant1, F Venet1, H Kherouf1, A Ayala2, A Lepape1, G Monneret1
1Hospices Civils de Lyon, Immunology Laboratory, Lyon, France; 2Brown University/ Rhode Island Hospital, Shock and Trauma Research Lab, Providence, RI, USA; 3Hospices Civils de Lyon, Intensive Care Units, Lyon, France

Introduction Septic syndromes are a culmination of multiple partially understood dynamic processes. However, it is now established that, after a transient exacerbated proinflammatory response, a counter-regulatory phase develops, rapidly inducing immune alterations that are thought to play a major role in patients’ mortality and susceptibility to nosocomial infections. Programmed Death-1 (PD-1) receptor and its ligands PD-L1 and PD-L2 constitute a newly described pathway that negatively controls immune responses. Recently, improved bacterial clearance and decreased mortality were observed in PD-1 knockout mice [1]. The objective of the present study was to investigate PD-1-related molecule expressions in septic shock patients.

Methods PD-1-related molecule expressions were measured by flow cytometry on circulating leukocytes from 64 septic shock patients and 49 healthy individuals. Severity scores (SAPS II, SOFA), clinical events (28-day mortality, occurrence of nosocomial infections) and the usual biomarkers of sepsis-induced immunosuppression (monocyte HLA-DR expression, lymphocyte phenotyping including Treg, plasma IL-10 concentration) were assessed. Ex vivo functional assays such as lymphocyte proliferation ($[^{3}H]$ thymidine incorporation) in response to phytohemagglutinin, and cytokine release (TNFa and IL-10 assessed by Bio-Plex technique) after overnight LPS incubation, were performed in the presence of blocking antibodies against PD-1-related molecules.

Results Patients presented with typical features of sepsis-induced immunosuppression (decreased mHLA-DR expression, increased Treg percentage, decreased LPS-induced TNFa release). At days 1 to 2 and days 3 to 5 after the onset of shock, patients displayed increased PD-1 and PD-L1 expressions on CD4+ T lymphocytes and enhanced PD-1, PD-L1 and PD-L2 expressions on monocytes. See Figure 1 overleaf. Non survivors presented with increased monocyte PD-L1 expression while enhanced monocyte PD-1 or PD-L2 expressions were associated with the occurrence of secondary nosocomial infections. In addition, decreased mitogen-induced lymphocyte proliferation was negatively correlated with increased lymphocyte PD-1 and PD-L1 expressions whereas monocyte PD-1-related molecule expressions were highly correlated with increased circulating IL-10 concentration. No beneficial effects of anti-PD-1-related molecule antibodies were observed.

Conclusions We describe here for the first time the overexpression of PD-1-related molecules on circulating leukocytes in septic shock patients. Importantly, these increased expressions were significantly associated with the occurrence of immune dysfunctions, secondary nosocomial infection, and death after septic shock. Taken together, our results suggest that PD-1-related molecules may constitute an additional regulatory system involved
in sepsis-induced immune alterations. This may offer innovative therapeutic perspectives for the treatment of this hitherto deadly disease.

Reference

P23
CCR2 drives neutrophil infiltration and elicits tissue damage in remote organs during sepsis
FO Souto¹, JC Alves-Filho¹,², WM Turato¹, DC Nascimento¹, M Auxiliadora-Martins³, A Basile-Filho⁴, F de Queiroz Cunha⁵
¹School of Medicine of Ribeirão Preto, University of São Paulo, Department of Pharmacology, Ribeirão Preto, Brazil; ²Glasgow Biomedical Research Centre, University of Glasgow, Division of Immunology, Infection and Inflammation, Glasgow, UK; ³School of Medicine of Ribeirão Preto, University of São Paulo, Department of Biochemistry and Immunology, Ribeirão Preto, Brazil; ⁴School of Medicine of Ribeirão Preto, University of São Paulo, Department of Surgery and Anatomy, Ribeirão Preto, Brazil

Introduction The severe form of sepsis is associated with multiple organ dysfunction syndrome (MODS), but the precise mechanisms by which MODS develops remain unclear. Neutrophils are essential cellular components of the innate immune system that have conserved roles in bacterial containment. Paradoxically, however, neutrophils also mediate tissue injury in varied human diseases, including sepsis.

Objective In the present study, we investigated the role of chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis.

Methods and results We demonstrated that neutrophils, which are normally unresponsive to CCR2 chemokines, acquired substantial chemotaxis to CCL2 and CCL7 when exposed to LTA (4.33-fold and 3.02-fold increase, respectively) or LPS (4.67-fold and 3.29-fold increase, respectively). Moreover, consistent with the functional response, we found that TLR2 and TLR4 signaling through the MyD88/NF-κB pathway mediates the upregulation of CCR2 and chemotactic responsiveness to CCR2 ligands on neutrophils. In vivo, intravenous injection of TLR ligands or induction of cecal ligation and puncture (CLP)-induced sepsis triggered chemotaxis of circulating neutrophils to CCR2 chemokines, which was completely abolished in MyD88-deficient mice. Notably, CCR2-deficient (CCR2−/−) or WT mice treated with CCR2 antagonist (RS504393, 2 mg/kg) showed a significant increased survival rate after CLP when compared with WT mice. Deficiency or pharmacology blockade of CCR2 attenuated neutrophil infiltration (by myeloperoxidase activity) into the lungs, heart, and kidneys, which was associated with reduction of serum biochemical markers of organ injury/dysfunction.

Importantly, neutrophils from septic patients (n = 19, prospected in survivors (S) and nonsurvivors (NS)) showed an increase of median of PD-1, PD-L1 and PD-L2 measurements on circulating monocytes and CD4+ lymphocytes in septic shock patients and healthy volunteers. PD-1 related molecule expressions were measured on (a): circulating monocytes and (b) CD4+ lymphocytes in whole blood from healthy volunteers (n=40) and septic shock patients at D1 to D2 (n = 37) and at D3 to D5 (n=56) after the onset of shock. Results presented as percentages of positive cells among total population of monocytes or CD4+ lymphocytes and as boxplots and individual values. *P <0.025, **P ≤0.002 (Mann–Whitney test). P <0.025 was considered statistically significant (with correction by the number of tests).

Figure 1 (abstract P23). PD-1, PD-L1 and PD-L2 measurements on circulating monocytes and CD4+ lymphocytes in septic shock patients and healthy volunteers. PD-1 related molecule expressions were measured on (a): circulating monocytes and (b) CD4+ lymphocytes in whole blood from healthy volunteers (n=40) and septic shock patients at D1 to D2 (n = 37) and at D3 to D5 (n=56) after the onset of shock. Results presented as percentages of positive cells among total population of monocytes or CD4+ lymphocytes and as boxplots and individual values. *P <0.025, **P ≤0.002 (Mann–Whitney test). P <0.025 was considered statistically significant (with correction by the number of tests).
Conclusions Collectively, our study identified CCR2 as an important receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade could be an adjuvant therapeutic strategy for treatment of sepsis-induced MODS.

Acknowledgements Financial support from FAPESP/CNPq/FAEPA.

P24
Prospective multicenter study of the effect of early fluid resuscitation on trends in IL-6 and TNFα levels in severe sepsis
R Arnold*, A Jones*, N Shapoori*, S Tzecziak*, R P Delling*, Østfold Hospital Trust, Medical Department, Fredrikstad, Norway; 2National Jewish Health, Denver, CO, USA; 3Cooper University Hospital, UNDNJ-Robert Wood Johnson Medical School at Camden, Department of Emergency Medicine, Camden, NJ, USA; 4Carolina’s Medical Center, Department of Emergency Medicine, Charlotte, NC, USA; 5Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, USA; 6Cooper University Hospital, UNDNJ-Robert Wood Johnson Medical School at Camden, Department of Critical Care Medicine, Camden, NJ, USA

Introduction The prognostic capability of TNFα and IL-6 is limited in septic shock. Previous studies were performed prior to publication of current therapeutic guidelines recommending aggressive early resuscitation. The objective of the present study was to evaluate the impact of early fluid resuscitation on serial TNFα and IL-6 levels and its association with mortality in severe sepsis.

Methods This is a substudy of a previously completed prospective, observational multicenter investigation of patients with severe sepsis. Inclusion criteria were age >17, infection with ≥2 SIRS, hypotension despite fluid challenge, treatment with a standardized quantitative resuscitation protocol, and identification within 3 hours of treatment initiation. Blood samples were obtained at enrollment, 6 hours, and 24 hours. Therapeutic amounts of intravenous crystalloid fluid were defined as ≥5 L and <5 L over 24 hours (initial 2 L fluid challenge over 4 hours followed by 150 ml/hour for 20 hours). Data analysis compared absolute levels of TNFα and IL-6 at each time point between survivors and nonsurvivors. The magnitude and direction of serial cytokine levels was quantified by the percentage difference of each marker for each patient between 0 and 6 hours and 0 and 24 hours. Statistical analysis was performed using the Wilcoxon-rank-sum test or the Student t test.

Results Forty patients were enrolled; 11 died. Vasopressors were required in 60% of all patients. Absolute values of IL-6 (pg/ml) were higher in nonsurvivors than survivors at enrollment (5,479 vs. 710); 6 hours (4,180 vs. 405), and 24 hours (5,710 vs. 377) (P <0.05). There was no difference in TNFα values between the two groups (P = NS at 0, 6, 24 hours). Nonsurvivors had a larger percentage (difference) in both TNFα and IL-6 than survivors at 24 hours. See Figure 1. Treatment with ≥5 L intravenous fluid over 24 hours was associated with a 32% decline in IL-6 compared with a 64% increase in IL-6 with <5 L fluid therapy. See Figure 2.

Conclusions In the context of a quantitative protocol for the treatment of severe sepsis, high-volume fluid resuscitation is associated with a decline in the percentage difference of IL-6. Trends in the percentage difference of both TNFα and IL-6 differentiate survivors from nonsurvivors. Further investigation is needed into the impact fluid resuscitation has on decreasing the inflammatory insult and the use of serial cytokine measurements as a measure of therapeutic effectiveness.

Acknowledgements Conducted within the Emergency Medicine Shock Research Network (EMShockNet). RA has no financial disclosures relevant to this study but has received research funding from Hutchinson Technologies. The present study was supported in part by a grant from the Shock Society/Novo Nordisk research grant for Hemorrhagic Shock and Hemostasis to ST. AJ’s effort is supported by a grant from the National Institutes of Health/National Institutes of General Medical Sciences K23GM076652. NS is supported in part by grants from the National Institutes of Health L091757 and GM076659.
Results The overall mortality rate was 12% (16/135), and 19% (25/135) were admitted to the ICU. The discriminatory power was highest for PSI, CURB-65 and CRB-65 with area under the receiver operator characteristic curve (AUC) of 0.79, 0.78, and 0.75, respectively. The AUC of the modified ATS score and IDSA/ATS guidelines were 0.61 and 0.69, respectively. Table 1 shows that a PSI class IV or V, and a CURB-65 and CRB-65 score ≥2 yielded the highest sensitivity for prediction of mortality, but the specificity and positive predictive value was low.

Conclusions The PSI, the CURB-65 and CRB-65 scores proved sensitive in predicting mortality in patients with Legionella pneumonia admitted during an LD outbreak, but the low specificities and positive predictive values necessitate thorough clinical judgment in patients with a high severity score. The modified ATS score and IDSA/ATS guidelines, which are decision recommendations for ICU admission, were not sensitive in predicting mortality from LD in this study.

References

P26
Increased survival after a cecal ligation and puncture-induced sepsis in mice consuming oleic acid
IM de Moraes, F Magno, C Campbell, P Estevam, C Araújo, P Bozza, C Gonçalves-de-Albuquerque, A Silva, HCF Neto
Osvaldo Cruz Foundation (IOC/CRUZ), Laboratory of Immunopharmacology, Rio de Janeiro, Brazil
Critical Care 2010, 14(Suppl 2)

Introduction Sepsis accounts for a huge number of deaths in ICUs worldwide. Sepsis describes a complex clinical syndrome that results from an infection, setting off a cascade of systemic inflammatory responses that can lead to multiple organ failure and death. Leite and colleagues have shown that mice fed for 6 weeks with an olive oil diet were resistant to endotoxic shock, with 60% survival at 168 hours [1]. Olive oil is composed of different polyunsaturated fatty acids such as omega 3 and 6, but the monounsaturated fatty acid omega 9, also known as oleic acid (OA), is that the main component of olive oil, is highly consumed in the Mediterranean diet.

Objective We aim to investigate the role of OA in an experimental model of sepsis.

Methods Swiss mice were given daily doses (orally) of OA, at 282 μg/animal, for 15 days. Control animals received saline. On the 16th day, polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Immediately after the procedure, all mice received volemic reposition and after 6 hours animals were given imipenem. Twenty-four hours after surgery, mice were euthanized and the peritoneal cavity was rinsed with sterile saline. Total leukocyte counts were performed in a Neubauer chamber and differential leukocyte were stained with May–Grumwald Giemsa. The supernatant and plasma were collected for cytokine quantification. In another set of experiments, the survival rate was determined daily for 7 days in separate groups of 10 animals for each condition.

Results Mice fed with OA were resistant to sepsis, with a 64% survival rate at 168 hours compared with saline-treated mice (33%). OA supplementation in CLP-subject animals led to a significant decrease in the total leukocyte counts (10.69 × 10⁶ ± 1.71), mainly neutrophils, compared with mice that received saline (20.30 × 10⁶ ± 2.69). However, in mice that consumed OA the levels of TNFα, IL-10 and IL-6 were not significantly different from mice fed with saline submitted to CLP. Interestingly, preliminary data showed that mice fed with OA had a lower level of bacteria in the peritoneal lavage leukocyte compared with mice submitted to CLP. See Figure 1.

Conclusions Our data suggest that treatment with OA reduces mortality in an experimental model of sepsis and attenuates inflammation. One mechanism involved may be due to an increased bacterial clearance in mice fed with OA. More data are required to clarify this mechanism of increased survival.

Acknowledgements This presentation was made possible by partial support from CNPq, FIOCRUZ and PAPERI.

Reference

P27
Anti-inflammatory effect of procalcitonin on in vitro LPS-stimulated human PBMC
A Foca, A Quirino, MC Pulicari, L Rametti, G Matera, MC Liberto
University Magna Graecia of Catanzaro, Department of Medical Sciences, Institute of Microbiology, Catanzaro, Italy
Critical Care 2010, 14(Suppl 2)

Introduction Sepsis is a leading cause of death in critically ill patients and is characterized by a marked increase of the host proinflammatory cytokine release that is precipitated by infectious agents. The sepsis response to therapy has not appreciably improved. The procalcitonin (PCT) concentration is increased in the serum samples of septic patients and correlates with severity of the illness. LPS is a pivotal bacterial product involved in pathogenesis of sepsis and septic shock. Preventing the beginning of inflammatory systemic cascade by means of LPS modulating agents might have a valuable effect in the control of such deadly illness. The aim of the present study was to
evaluate the potential effect of procalcitonin on in vitro LPS-induced release of cytokines from human PBMC.

Methods *S. typhimurium* LPS was preincubated with human PCT and then was added to freshly isolated human PBMC cultures in RPMI 1640. In such cultures the final concentrations of LPS and PCT were 10 ng/ml and either 5,000 or 500 ng/ml respectively. A panel of cytokines was evaluated on culture supernatants by Biochip microarray (Randox) and PCT was tested by ELFA. Data analysis was carried out by a nonparametric method (Mann–Whitney U test, Graph Pad Prism version 4.03) to establish statistical differences between groups.

Results Both of the PCT concentrations used significantly (P < 0.05 vs. LPS-stimulated PCT-free controls) reduced TNFα for 4-hour incubation with LPS and MCP-1 (24 hours following LPS challenge). The lower concentration of PCT was also able to significantly (P<0.05 vs. LPS-stimulated PCT-free controls) decrease the TNFα and IL-2 levels in the 24-hour samples.

Conclusions PCT, besides the well-known role as marker of sepsis, could be a potentially useful molecule to control systemic inflammatory mediators in both sepsis and septic shock.

Introduction Sepsis is a major cause of morbidity and mortality in intensive care clinics and the incidence is continuously increasing. Estimated mortality rates are over 30% for patients with severe sepsis and over 50% for patients with septic shock. Endotoxins, or lipopolysaccharides (LPSs), are a major component of the cell membrane of Gram-negative bacteria. LPS is well known to induce a strong response from the immune system leading to release of inflammatory mediators and occasionally sepsis, or even septic shock. The aim of our study is to investigate the clinical effects of adding treatment with the Alteco® LPS Adsorber compared with traditional therapy. These effects were attributed with the removal of endotoxin from the systemic circulation. Only in one case using hemofiltration for acute renal failure in the study group (in the reference group in all patients), 28-day mortality was 16.7% and 66.7% respectively. Negative effects were negligible.

Table 1 (abstract P28). Results from analyses of samples

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage I</th>
<th>Stage II</th>
<th>Stage III</th>
<th>Stage IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS (EU/ml)</td>
<td>RefG 1.4 ± 0.0</td>
<td>AdG 1.4 ± 0.0</td>
<td>RefG 1.4 ± 0.2</td>
<td>AdG 0.8 ± 0.2</td>
</tr>
<tr>
<td>PCT (ng/ml)</td>
<td>RefG 1.4 ± 2.2</td>
<td>AdG 1.1 ± 3.7</td>
<td>RefG 1.4 ± 2.8</td>
<td>AdG 4.2 ± 2.2</td>
</tr>
<tr>
<td>CI (l/min/m²)</td>
<td>RefG 1.1 ± 9.0</td>
<td>AdG 3.9 ± 0.9</td>
<td>RefG 3.1 ± 0.6</td>
<td>AdG 3.0 ± 0.7</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>RefG 69.4 ± 1.4</td>
<td>AdG 81.1 ± 2.9</td>
<td>RefG 69.1 ± 3.2</td>
<td>AdG 72.8 ± 3.7</td>
</tr>
<tr>
<td>PaO₂ (mmHg)</td>
<td>RefG 88.3 ± 9.4</td>
<td>AdG 129.4 ± 12.2</td>
<td>RefG 91.7 ± 7.8</td>
<td>AdG 1306.9 ± 2.2</td>
</tr>
<tr>
<td>FiO₂ (%)</td>
<td>RefG 50.0 ± 0.0</td>
<td>AdG 37.4 ± 0.3</td>
<td>RefG 50.0 ± 0.0</td>
<td>AdG 35.0 ± 0.0</td>
</tr>
<tr>
<td>ELVW (ml/kg)</td>
<td>RefG 12.9 ± 3.3</td>
<td>AdG 13.2 ± 1.2</td>
<td>RefG 110.2 ± 7.1</td>
<td>AdG 7.1 ± 1.1</td>
</tr>
<tr>
<td>PAO₂/FiO₂ (mmHg)</td>
<td>RefG 179.2 ± 10.1</td>
<td>AdG 270.1 ± 24.3</td>
<td>RefG 176.3 ± 9.5</td>
<td>AdG 345.0 ± 21.1</td>
</tr>
<tr>
<td>DO₂ (mmHg)</td>
<td>RefG 120.0 ± 1.7</td>
<td>AdG 133.9 ± 3.9</td>
<td>RefG 135.3 ± 3.1</td>
<td>AdG 3.3 ± 1.4</td>
</tr>
<tr>
<td>SaO₂ (%)</td>
<td>RefG 88.9 ± 1.9</td>
<td>AdG 94.9 ± 2.8</td>
<td>RefG 89.5 ± 3.5</td>
<td>AdG 98.2 ± 0.9</td>
</tr>
<tr>
<td>SVO₂ (venous %)</td>
<td>RefG 86.2 ± 2.3</td>
<td>AdG 76.0 ± 3.4</td>
<td>RefG 85.3 ± 3.1</td>
<td>AdG 71.3 ± 2.4</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>RefG 4.9 ± 0.1</td>
<td>AdG 5.5 ± 0.3</td>
<td>RefG 5.3 ± 0.3</td>
<td>AdG 2.4 ± 0.9</td>
</tr>
<tr>
<td>APTt (sec)</td>
<td>RefG 41.5 ± 5.9</td>
<td>AdG 42.1 ± 4.6</td>
<td>RefG 46.6 ± 7.7</td>
<td>AdG 58.4 ± 5.7</td>
</tr>
</tbody>
</table>

1, baseline, prior to first adsorber treatment; II, prior to second adsorber treatment/day after first treatment; III, 2 days after second adsorber treatment/3 days after first adsorber treatment.
P30

Clinical impact of a multiplex real-time PCR assay (SeptiFast®) for the rapid detection of pathogens in patients with end-stage heart failure bridged to heart transplantation with ventricular assist devices

A Chaidaroglou1, E Manol1, A Gouzouata1, P Gour1, M Pantou1, G Saroglou1, P Alivizatos1, P Styra1, D Degiannios2

1 Onassis Cardiac Surgery Center, Immunology, Molecular Biology and Histocompatibility Laboratory, Athens, Greece; 2 Onassis Cardiac Surgery Center, 2nd Cardiology Department, Athens, Greece; 3 Onassis Cardiac Surgery Center, 1st Cardiothoracic Surgery and Transplantation Department, Athens, Greece

Introduction Implanted ventricular assist devices (VADs) are widely used in patients with end-stage heart failure as a bridge to heart transplantation (HTx) or as destination therapy (DT); however, their use is associated with increased postoperative infection-related morbidity and mortality. Rapid detection of responsible organisms is imperative for the initiation of appropriate treatment and for lowering mortality due to sepsis. Direct detection of pathogens in blood samples by nucleic acid amplification is a sensitive and fast alternative to blood cultures. The multiplex real-time PCR system SeptiFast® (Roche Diagnostics) allows for rapid detection and identification of the 25 most common pathogens (Gram-positive and Gram-negative bacteria and fungi) in blood, in less than 6 hours. The aim of this study was to evaluate the usefulness of SeptiFast® in patients with implanted VADs.

Methods The study included 103 blood samples from 38 VAD patients analyzed over a period of 24 months (January 2008 to December 2009), using SeptiFast® in parallel with blood cultures. Blood samples were obtained only from patients suspected of harboring an infection, and in case of positive results follow-up samples were obtained on a weekly basis. PCR was performed according to manufacturers’ description (SeptiFast®) using MagnaLyser for extraction of DNA from 1.5 ml peripheral blood and LightCycler 2.0 (Roche Diagnostics) for amplification and detection.

Results SeptiFast® and blood cultures yielded concurrent negative results in 76% of the samples where SeptiFast® only was positive and in 6.4% of the samples where blood cultures only were positive. In cases with concurrent positivity, acceptance of the SeptiFast® results could have led to an earlier targeted treatment.

Conclusions The PCR-based SeptiFast® test in combination with traditional microbiological methods may facilitate fast and specific antibiotic treatment and may contribute to reduction of sepsis progressing infections in VAD patients.

P31

Extracellular metabolic alterations in critically ill septic patients studied by adipose tissue microdialysis

M Theodorakopoulou1, N Nikolai1, S Orfanos1, D Vassiliadou1, A Diamantakis1, A Kotanidou1, P Kopterides1, N Maniatis1, A Armanagidi1, I Dimopoulou1

1 University Hospital of Athens ATTIKON, University of Athens School of Medicine 2nd Clinic of Intensive Care Medicine, Athens, Greece; 2 Alexandra General Hospital, University of Athens School of Medicine Department of Clinical Thorpeutics, Athens, Greece; 3 University Hospital of Athens ATTIKON, University of Athens School of Medicine Clinic of Endocrinology, Athens, Greece; 4 Evangelismos Hospital, University of Athens School of Medicine 1st Clinic of Intensive Care Medicine, Athens, Greece

Introduction Tissue metabolic alterations during critical sepsis have not been well characterized.

Objective To investigate the tissue metabolic alterations during sepsis.

Methods A microdialysis (MD) catheter was inserted into the subcutaneous adipose tissue of the upper thigh in 65 (39 men) septic critically ill patients upon sepsis onset. Dialysate samples were analyzed for glucose, lactate, pyruvate, and glycerol. The lactate/pyruvate (L/P) ratio was calculated. Sampling was performed six times per day for a maximum of 6 days. The daily mean values of MD measurements were calculated for each patient. Eleven (five men) critically ill nonseptic patients served as controls.

Results Septic patients were older (66 ± 17 vs. 45 ± 20 years, P < 0.001), and had a higher APACHE II score (21 ± 5 vs. 14 ± 6, P < 0.001) along with a higher SOFA score (8 ± 3 vs. 3 ± 3, P < 0.001) compared with nonseptic patients. Septic patients had a high tissue glucose (>4.6 mmol/l), lactate (>2 mmol/l), pyruvate (>120 μmol/l), L/P ratio (>25), and glycerol (>200 μmol/l) during almost the entire observation period. Septic patients had higher tissue glucose (P = 0.02) and glycerol (P = 0.04) levels than nonseptic patients during the whole study period. They also tended to have higher lactate (P = 0.14) concentrations. In contrast, the two groups had similar tissue pyruvate (P = 0.35) and L/P ratios (P = 0.80).

Conclusions Critical sepsis is characterized by an excessive release of extracellular glucose, lactate, and glycerol, with the latter reflecting probably increased lipolysis. These mirror the well-known sepsis-related blood metabolic alterations. Thus, chemical monitoring with subcutaneous MD is accurate in severely ill septic patients.
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a recently discovered cell surface molecule expressed on neutrophils, mature monocytes, and macrophages [1]. Activation of TREM-1 synergistically enhances proinflammatory cytokine production induced by toll-like receptor (TLR) stimulation [2]. A soluble form of TREM-1 has shown promise as a sensitive and specific biomarker for sepsis in humans [3-5]. Expression and function of TREM-1 in the dog has yet to be characterized. We hypothesize that the expression of canine TREM-1 will be upregulated after stimulation with TLR agonists. We assessed TREM-1 expression on canine neutrophils after exposure to TLR agonists in vitro and in vivo after i.v. LPS administration. In vitro, expression of TREM-1 on neutrophils is significantly upregulated by stimulation with microbe-derived agonists against TLR2/6 (Pam2CSK4), TLR1/2 (Pam3CSK4), and TLR4/MD2 (ultrapure LPS and wildtype LPS) (paired t test, P < 0.05). The TLRs agonist flagellin did not significantly upregulate TREM-1 expression at any time point. See Figure 1. In contrast, i.v. administration of LPS to dogs resulted in a significant decrease in both TREM-1 expression and the percentage of TREM-1-positive neutrophils from 6 hours through 12 hours post LPS administration. See Figure 2. The disparity between in vitro and in vivo effects of LPS suggest other factors, such as systemic and local cytokine production and neutrophil turnover, may influence expression and shedding of TREM-1 on canine neutrophils. We suggest that naturally occurring sepsis in the dog represents the ideal model for defining diagnostic biomarkers and discovering efficacious therapeutics for use in human sepsis.

Acknowledgements This presentation was supported by Morris Animal Foundation and ICARE.

Figure 1 (abstract P35), Kinetics of TREM-1 expression after TLR agonist stimulation in vitro.

Figure 2 (abstract P35), Kinetics of TREM-1 expression post LPS administration in vivo.
References

P36
Severe sepsis and its impact on outcome in old and very old patients admitted to the intensive care unit
D Anjega, O Singh, Y Javer, N Gang
Max Super Specialty Hospital, Department of Critical Care Medicine, New Delhi, India

Introduction Older patients comprise an increasing proportion of ICU admissions. Advanced age and multiple co-morbidities compromise their immunity and hence they may be more prone to succumbing to severe infection and have poorer outcome.

Objective To assess the impact of severe sepsis on mortality in the old and very old subgroups of patients admitted to a medical ICU.

Methods All patients admitted to a medical ICU of a tertiary care institute with severe sepsis or septic shock were prospectively included. Patients were divided into young (age below 60 years), old (age between 60 and 80 years), and very old (age above 80 years) groups. Data regarding baseline patient characteristics, admission APACHE II score, and ICU course including need for organ support and ICU length of stay were noted. Qualitative data were analyzed using the chi-squared test or Fisher exact test as appropriate and for organ support and ICU length of stay were noted. Qualitative data were analyzed using the chi-squared test or Fisher exact test as appropriate and quantitative data were analyzed using Student’s t-test, inter-group and intra-group comparison for quantitative data was done by one-way ANOVA. The primary outcome measure was ICU mortality.

Results Of 387 patients who were admitted with signs of SIRS or sepsis during the study period of 20 months, 132 patients who fulfilled the criteria for severe sepsis/septic shock were included in the analysis. The most common suspected site of infection was the lungs (60 patients, 45.5%), followed by the urinary tract (28 patients, 21.2%) and the abdomen (22 patients, 16.7%). ICU mortality in younger patients was 45.6% as compared with the younger population. See Table 1.

Table 1 (abstract P36)

<table>
<thead>
<tr>
<th></th>
<th>Young (<60 years)</th>
<th>Old (60 to 80 years)</th>
<th>Very old (>80 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (n = 132)</td>
<td>57 (43.2%)</td>
<td>56 (42.4%)</td>
<td>19 (14.4%)</td>
</tr>
<tr>
<td>Sex, males (%)</td>
<td>36 (63.2%)</td>
<td>38 (67.9%)</td>
<td>10 (52.6%)</td>
</tr>
<tr>
<td>Mean age, years (± SD)</td>
<td>44.4 ± 9.8</td>
<td>68 ± 5.4</td>
<td>86.7 ± 5</td>
</tr>
<tr>
<td>Mean APACHE II score (± SD)</td>
<td>10.6 ± 6.4</td>
<td>10.5 ± 7.3</td>
<td>13.7 ± 10.1</td>
</tr>
<tr>
<td>Inotropic support</td>
<td>51 (89.5%)</td>
<td>45 (80.5%)</td>
<td>16 (84.2%)</td>
</tr>
<tr>
<td>Renal support</td>
<td>18 (31.6%)</td>
<td>23 (41.1%)</td>
<td>5 (26.3%)</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>33 (57.9%)</td>
<td>41 (73.2%)</td>
<td>16 (84.2%)</td>
</tr>
<tr>
<td>Length of ICU stay, days (± SD)</td>
<td>4.56 ± 5.8</td>
<td>4.11 ± 5.4</td>
<td>3.47 ± 2.5</td>
</tr>
<tr>
<td>ICU mortality</td>
<td>26 (45.6%)</td>
<td>34 (60.7%)</td>
<td>15 (78.9%)</td>
</tr>
</tbody>
</table>

Conclusions The risk of dying from severe sepsis is considerably higher in the old and very old subgroup of patients. Hence, early aggressive care to recognize and manage severe sepsis is required to improve outcome.

P37
Chromogranin A expression in plasma of critically ill patients
T Lavaux1;², F Schneider1, C Bach1, 4, J-E Herbrecht1, D Aunis1, M-H Metz-Boutigue1,4
1University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France; 2INSERM U977, Bioactive Neuropeptides Group, Strasbourg, France; 3University Hospital of Strasbourg, Medical Intensive Care Unit, Strasbourg, France; 4INSERM U275, Pathophysiology of the Nervous System, Strasbourg, France

Introduction Risk assessments of patients should be based on objective variables, such as biological markers that can be measured routinely. Such a prediction remains a difficult challenge. The acute response to stress causes the release of catecholamines from the chromaffin cells of the adrenal medulla accompanied by numerous proteins, peptides such as chromogranin A (CGA) and its natural fragments. To date, no study has evaluated the prognostic value of CGA in critically ill ICU patients.

Methods We conducted a prospective study of ICU patients, admitted for a life-threatening condition with at least two organ failures, by measuring plasma procalcitonin (PCT), C-reactive protein (CRP), the Simplified Acute Physiology Score II (SAPS II), and CGA on the 24th hour after admission. Continuous data are reported as the median (interquartile range), and group differences were evaluated with the Mann–Whitney U test or the Kruskal–Wallis test. A Cox proportional hazards regression model was used to evaluate the effectiveness of the logarithmically transformed CGA concentration on the endpoint and to calculate hazard ratios (HRs) with 95% CIs. All statistical analyses were performed with the SPSS statistical package (SPSS for Windows version 11.5).

Results In 120 consecutive patients, we found positive correlations between CGA and the following: CRP (r² = 0.216; P = 0.02), PCT (r² = 0.396; P <0.001), SAPS II (r² = 0.438; P <0.001). Nonsurvivors had significantly higher CGA concentrations than survivors (median interquartile range): 293 µg/l (163 to 699 µg/l) vs. 86 µg/l (54 to 175 µg/l), respectively; P <0.001). Serum CGA concentrations were significantly increased in SIRS patients with a median value of 115 µg/l (68 to 202), when compared with healthy controls (P <0.001). In cases where infection was associated with SIRS, patients had the highest increase in CGA with a median value of 138 µg/l (65 to 222; P <0.001). See Figure 1. In a multivariable linear regression analysis, creatinine (P <0.001), age (P <0.001), and SAPS II (P = 0.002) were the only significant independent variables predicting CGA concentration (r² = 0.352). A multivariate Cox regression analysis identified three independent factors predicting death: log-normalized CGA concentration (hazard ratio, HR), 7.25;
95% confidence interval (CI), 3.00 to 17.50), SAPS II (HR, 1.05; 95% CI, 1.03 to 1.07), and cardiogenic shock (HR, 3.92; 95% CI, 1.73 to 8.88).

Conclusions The admission plasma CGA concentration is increased in the most severe critically ill patients; it correlates with the SAPS II measured after 24 hours and with inflammatory/infectious markers (PCT and CRP). It may be useful in establishing an early stratification for severity in nonselected critically ill patients with organ failures.

P38

Chlamydia pneumoniae infection in macrophages and in lung epithelial cells: IL-10 and the innate immunity response

JT Korhonen, R Lahesmaa, M Puolakkainen

1 University of Turku and Åbo Akademi University, Turku Centre for Biotechnology, Turku, Finland; 2 Turku University, Faculty of Medicine, Institute of Biomedicine, Turku, Finland; 3 University of Helsinki and HUSLAB, Department of Virology, Haartman Institute, Helsinki, Finland

Introduction The genus of Chlamydiae comprises obligate intracellular pathogens that occasionally can disseminate and even cause septic infections. *Chlamydia pneumoniae* causes acute and chronic respiratory tract infections from sinusitis to severe pneumonia, and phagocytes can transmit the bacteria from the lungs to the vasculature. We have previously shown in IL-10 knockout mice that IL-10 limits the severity of infection in *C. pneumoniae* [1].

Objective Although IL-10 could contribute to the resolution of *C. pneumoniae* infection by regulating the T-helper cell balance (Th1/Th2), we were interested in the direct effects of IL-10 and the IL-10-regulated genes in modulating *C. pneumoniae* growth in macrophages and in respiratory epithelial cells.

Methods We investigated the effect of IL-10 and the expression of an IL-10-responsive anti-inflammatory factor on mRNA and protein level in *C. pneumoniae* infected human monocyte/macrophage (MonoMac6 and Thp-1) and in lung epithelial adenocarcinoma (A549) and in HL (human lung) cell lines. We also applied a luciferase promoter assay to study the regulation of the anti-inflammatory gene expression during the *C. pneumoniae* infection.

Results In agreement with the previous studies, *C. pneumoniae* proliferated in epithelial cells, while in monocyte/macrophages the infection was often nonproductive and aberrant forms of bacteria were observed. The IL-10 responsive anti-inflammatory factor was differentially regulated at transcriptional level in A549 and MonoMac6 cells in response to *C. pneumoniae* infection, which could potentially affect the outcome of infection. The luciferase promoter assay showed that the transcription was mediated via the E-box regulatory element of the gene.

Conclusions Our results imply that the anti-inflammatory response to intracellular *C. pneumoniae* infection varies in different cell types and ongoing studies are needed to clarify the role of IL-10 response in limiting *Chlamydia* growth in these cells.

Acknowledgements JRK has in the past received honoraria from B Braun (Melsungen, Germany).

References

P40

Study of the *Helicobacter pylori* infection in Iranian patients with multiple sclerosis

N Sanadgil

Biotechnology Research Institute, Biology, Zabol, Iran

Introduction Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is believed to have both genetic and environmental components. During recent years, attention was paid to the role of bacterial infections in the process of MS development. Helicobacter pylori infection have been linked to peripheral neuropathies as they may trigger cellular and humoral immunity due to the sharing of similar epitopes present in the nervous tissue. We have investigated one of the candidate bacteria for the environmental component of MS, *H. pylori*.

Objective To evaluate the roles of *H. pylori* in tendency toward MS in Iranian patients.

Methods In a prospective case–control study, we studied 78 patients with MS and 123 healthy controls for viral DNA detection and antibody assay. DNA extracted from serum and real-time PCR was employed to detection of *H. pylori* genome. The levels of anti-*H. pylori* IgG were measured in samples by ELISA in Dr Ahmad's medical laboratory.

Results We found *H. pylori* DNA in 84% and 71% of patients and healthy controls, respectively. Furthermore, higher levels of anti-*H. pylori* IgG were detected in patients in contrast with healthy controls. Moreover, the genome copy number of *H. pylori* was significantly increased in patients. Results are expressed as the mean ± standard deviation and analyzed using Student’s t test for comparison between two groups. Results were considered significant when *P* < 0.05.

Conclusions We did not observe significant correlation between prevalence of *H. pylori* DNA and development of MS in selected patients, but active *H. pylori* infection was found in patients more than in controls. These results support the hypothesis that *H. pylori* may contribute to the MS disease thought to establish active infection process and induce immune response. The role of *H. pylori* in the modulation of MS requires further study.
Incidence of bacteremia at the time of ICU admission and its impact on outcome

D Jungra, O Singh, G Singh, P Bajaj
Max Super Specialty Hospital, Critical Care Medicine, New Delhi, India

Introduction Blood culture is routinely taken at the time of admission to the ICU for all patients suspected to have any infection, even though it may be positive only in a few patients. Moreover, the impact of a positive blood culture in such a patient population is not clear.

Objective To find the incidence of bacteremia at the time of ICU admission, to assess its impact on the outcome, and to analyze which factors are related to poorer outcomes in these bacteremic patients.

Methods A retrospective cohort study over a 2-year period. Data from all the admissions to a medical ICU, in a tertiary care hospital, with suspected infection in whom blood cultures were sent at the time of admission were analyzed. Data regarding patient demographics, probable source of infection, previous antibiotic use, and ICU course were recorded. Severity of illness on admission was assessed by APACHE II score. Qualitative data were analyzed using the chi-square test or Fisher exact test and quantitative data were analyzed using Student’s t test. Primary outcome measure was ICU mortality.

Results A total of 567 patients were included in the analysis. A significant proportion of these patients, 238/567 (42%), were already on antibiotics. Three hundred and sixty-three (64%) patients were direct ICU admissions from casualty, 61 (10.76%) were shifted from hospital wards, 35 (6.17%) from other ICUs in the hospital, and 108 (19.05%) were transferred from other hospitals. Blood cultures were positive in only 60/567 patients (10.6%). Mortality was significantly higher in patients with positive blood cultures (27/60, 45% vs. 69/507, 13.6%; \(P = 0.000 \)).

Univariate analysis for assessing the risk factors for ICU mortality among bacteremic patients was done in which age \((P = 0.061 \)), sex \((P = 0.233 \)), type of admission \((P = 0.253 \)), type of organism, severity of illness \((P = 0.234 \)), and site of infection \((P = 0.250 \)) were analyzed, but only previous antibiotic use was statistically associated with higher mortality \((P = 0.011 \)).

Bacteremic patients who were already on antibiotics had a significantly higher mortality (54.2% vs. 8.3%) \((OR 12.9, 95\% CI: 1.6 to 100) \). Mortality was higher in patients with Pseudomonas aeruginosa (72.7%) although it was not statistically significant \((P = 0.08) \). See Tables 1 and 2.

Conclusions Blood cultures may be positive in only a minority of patients with suspected infection admitted to the ICU as most of these patients may already be taking antibiotics. Nevertheless, the prognosis of those patients with positive blood culture is worse, especially if culture is positive in spite of the patient being on antibiotics.

Differential kinetics of endothelial cell activation biomarkers E-selectin and endocan during nonlethal endotoxemia in 1295v mice: a role for PMN-derived serine proteases in the transient decrease of circulating endocan levels

J Paste1, N De Freitas Caires2, M Delehedde3, A Scherpereel4, E Parmentier4, D Mathieu4, P Lassalle1
1 Institut Pasteur, Inserm U1019, Lille, France; 2Lunginnov, Institut Pasteur, Lille, France; 3CHRU, Hospital Calmette, Lille, France

Introduction Severe septic syndrome remains one of the most frequent causes of death in ICUs. One of the main players in this pathology is the endothelium integrity. Our laboratory has demonstrated in preliminary clinical studies among the various biomarkers of endothelial dysfunction that blood levels of endocan (ESM-1), a pulmonary vascular endothelial cell-specific molecule participating in the control of endothelial–leukocyte interactions, are associated with the severity and evolution of septic states. On the other hand, we showed in vivo that antiprotease therapy is associated with a decrease of the leukocyte rolling and firm leukocyte adhesion to endothelium in sepsis. This decrease in the leukocyte–endothelial cell contacts was associated with an increase of blood endocan levels, suggesting a linkage between leukocyte proteases, endocan, and inflammation during sepsis.

Methods In order to characterize this linkage, we set up a mouse model of nonlethal shock induced by endotoxin (LPS), in mice genetically deficient in cathepsin G (CG-/-) or double deficient in cathepsin G and elastase (CGEL-/-). The neutrophil and endothelial activation biomarkers included myeloperoxidase, sE-selectin, and endocan ELISAs in mouse serum. In vitro tests of endocan proteolysis were also performed.

Results During the nonlethal endotoxemia, clinical scores as well as E-selectin levels were maximal at 24 hours and progressively returned to the baseline. Circulating myeloperoxidase also increased early at 24 hours but remained elevated until 72 hours. By contrast, circulating endocan decreased early at day 1, remained undetectable at days 2 and 3, and then normalized at day 5. A strong inverse correlation was observed between endocan and myeloperoxidase levels. Similar findings were observed CG-/-.

However,
CGEL−/− gained 1 day in health recovery, and showed less important reduction in endocan levels. Incubation of mouse endocan with PMN supernatants from WT, CG−/−, or CGEL−/− generated a major proteolytic fragment of 14 kDa. The proteolytic activity was inhibited by α-antichymotrypsin.

Conclusions In nonlethal endotoxemia, both endothelial cells and PMN are activated. The kinetics of PMN activation matched with the decrease of circulating endocan. In vitro, the PMN-derived serine proteases induce endocan cleavage, which may relate to the decrease of circulating level of endocan. Our results detail for the first time the kinetics of endothelial cell and PMN activation markers in a mouse model of sepsis and revealed that a PMN-derived serine protease is involved in the degradation of endocan that differs from CG or EL.

P43

Soluble TLT-1 is a naturally occurring TREM-1 inhibitor and protects mice from hyperresponsiveness and death during sepsis

M. Derve1), Y. Bouazza2, F. Masson2, C. Alauzet2, B. Levy2, P. E. Bollaert1, S. Gibot1,2
INSRM AVENIR Groupe CHOC, Nancy, France; 1Laboratoire d’Immunologie, CHU Brabois, Nancy, France; 2EA 4369, Laboratoire de Bactériologie, UHP, Nancy, France; 1Service de Réanimation Médicale, TD6, CHU Brabois, Nancy, France; 2Service de Réanimation Médicale, Hôpital Central, Nancy, France

Critical Care 2010, 14(Suppl 2):P43 (doi: 10.1186/cc9146)

Introduction

Triggering receptor expressed on myeloid cells-1 (TREM-1) and TREM-like transcript 1 (TLT-1) belong to the TREM family. TREM-1 is expressed on neutrophils and monocytes/macrophages, and plays a crucial role during the onset of sepsis by cooperating with pattern recognition receptors in a synergistic way, thus amplifying the host immune response. TLT-1 is selectively expressed on activated platelets and is known to facilitate platelet aggregation through binding to fibrinogen. Interestingly, TLT-1 null mice displayed higher plasma cytokines concentrations and death rates than WT mice during experimental sepsis. We identified a 17 amino acid peptide derived from the extracellular part of TLT-1, named LR17, which is responsible for TLT-1 anti-inflammatory properties.

Methods

To quantify cellular activation, human neutrophils were isolated from whole blood by density gradient. After stimulation with LPS, αTREM-1 (a TREM-1 agonist) and/or LR17, p38-MAPK and ERK1/2 phosphorylation was quantified by western blot; NF-κB activity and cytokine release by ELISA; mRNA levels of various gene of interest by quantitative RT-PCR; and ROS production by flow cytometry. The effect of siRNA-induced Trem-1 silencing was studied on purified human monocytes. In vivo studies were performed on a CLP mouse model of sepsis.

Results

αTREM-1-induced or LPS-induced cytokine/chemokine production by human neutrophils or monocytes was dose-dependently reduced in the presence of recombinant TLT-1 or LR17, both at the gene (mRNA) and protein levels (ELISA). This decrease involves a broad set of cytokines and chemokines: TNFα, IL-1β, IL-6, IL-8, IL-16, GRO-α, MCP-1, MIP-1β, and RANTES. Exploration of intracellular signalling showed that LR17 also reduced αTREM-1-induced or LPS-induced p38-MAPK and ERK1/2 phosphorylation, NF-κB activation and then ROS production in neutrophils (Figure 1a to e). On Trem-1-silenced monocytes, TREM-1 agonist did not induce cytokine production and LR17 did not show any effect (Figure 1f). As a result of this activity, both early and late LR17 administration to septic mice modulated the proinflammatory cascade triggered by infection with a decrease of plasma, bronchoalveolar lavage and peritoneal fluid cytokine concentration, as well as of cytokine mRNA levels in the lung and liver. TLT-1 also prevented organ damage and coagulation abnormalities and finally improved survival by more than 60% versus controls (Figure 2 overleaf).

Conclusions TLT-1 plays a pivotal role during sepsis, linking haemostasis and inflammation.

P44

Monoamino-oxidase-A function and potential benefit of its inhibition in sepsis

G. P. Otto, M. Sossdorf, J. Lemm, S. Scholz, R. A. Claus, M. Bauer
Jena University Hospital, Clinic for Anaesthesiology and Intensive Care, Jena, Germany

Introduction

The use of hydrocortisone (HC) for treatment of septic shock is controversially discussed. Microarray data from the CORTICUS trial showed the transcript encoding monoamino-oxidase-A (MAOA) as one of the...
Methods

source of ADAMTS13 protein. The underlying mechanisms of the decrease in to now, hepatic stellate cells (HSC) are considered to function as the primary sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Up activated protein C and selenate/f_l

Transcripts coding the VWF cleaving protease are decreased under/f_i

Results

Quantitative PCR showed a significant increase of MAOA mRNA expression in patients with sepsis versus healthy controls (eightfold, \(P < 0.05 \)). The same is true for protein levels of MAOA (1.5-fold, \(P < 0.05 \)). MAOA mRNA was quantified by quantitative PCR, and protein levels were measured by flow cytometry. Phagocytosis determining phagocytic activity were performed following the manufacturer’s instructions. For ex vivo stimulation, whole blood of healthy individuals was incubated with HC (50 \(\mu \)g/ml) and LPS (100 ng/ml). For laboratory and microbiological analyses, routine laboratory procedures were used. ROS were measured by dihydroorudihydrofluorescein diacetate and flow cytometry.

Conclusions

MAOA is strongly upregulated during severe sepsis on RNA as well as on protein level. In septic mice, higher survival rates were observed by blocking MAOA. Inhibition of MAOA might have potential in sepsis and so provide a novel method for therapeutic intervention.

Acknowledgements

The project was supported in part by a grant from the State of Thuringia, Germany (ProExcellence Thuringia PE 114-1).

P45

Transcripts coding the VWF cleaving protease are decreased under proinflammatory conditions, which is reversed by co-incubation with activated protein C and selenate

F. Conrad1, CL Bockemeyer1, M Sossdorf1, MW Sieber1, P Recknagel1, MF Blaess1, T Schwirholz1, W Lösch1, M Bauer1, RA Claus1

1 Jena University Hospital, Clinic for Anaesthesiology and Intensive Care, Jena, Germany; 2 Hannover Medical School, Institute for Pathology, Hannover, Germany Critical Care 2010, 14(Suppl 2):P45 (doi: 10.1186/cc9148)

Introduction

In sepsis, the severity-dependent decrease of the VWF-cleaving protease ADAMTS13 is a common phenomenon, which may contribute to aggregation of platelets/platelet consumption and the development of sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Up to now, hepatic stellate cells (HSC) are considered to function as the primary source of ADAMTS13 protein. The underlying mechanisms of the decrease in sepsis remain unclear.

Methods

We present data obtained in in vitro experiments using cultured human HSC (LX2-line) and microvascular endothelial cells (HMEC) stimulated under proinflammatory conditions. Monolayers were exposed to cytokines known to be plasma abundant/relevant during systemic inflammation (TNF, IL-1\(\beta \), IFN\(\gamma \)), to bacterial endotoxin (100 ng/ml), to a mixture of cytokines/endoxin, or to freshly prepared serum obtained from patients (n = 12) with severe sepsis/septic shock.

Results

Both cell lines expressed ADAMTS13 mRNA as quantitated using quantitative PCR normalized to a set of unvaried genes. Overall, incubation with cytokines resulted in a decrease of ADAMTS13 mRNA expression ranging between 40 and 80% of the basal transcription rate in between 24 hours. Furthermore, in endotoxin-treated cells, ADAMTS13 declined to 60% (HSC) or 65% of basal levels. This effect was more pronounced by the mixture of cytokines/endoxin to levels of 53% (HSC) or 40% (HMEC). In monolayers treated with serum from patients with sepsis, only 10% (HSC) or 49% (HMEC) of the basal level was determined. Both the trace element selenium and activated protein C, which are used in the supportive therapy of patients with sepsis, ameliorates the decrease in serum-treated HSC and increased the level of ADAMTS13 transcript in endothelial cells. Continuous infusion adapted to body weight also abolished the decrease of ADAMTS13 expression in hepatic tissues during the course of polymicrobial sepsis in mice.

Conclusions

We found that mRNA coding ADAMTS13 protein is also present in endothelial cells. Also we observed a marked decrease in both cell lines undergoing proinflammatory stimulation. This mechanism may contribute to the decline of proteolytic activity of ADAMTS13 in patients with sepsis and sepsis-associated TMA. Furthermore, the amelioration of this effect by selenate and APC may function as mechanisms resulting in the more favorable outcome observed in a number of clinical studies.

Acknowledgements

Funding by the German Research Council (DFG CL 173/4-1) to RAC is gratefully acknowledged.

P46

Gastrin-releasing peptide receptor antagonist induces a protection from lethal sepsis: involvement of toll-like receptor 4 signaling

F Petroni1,1,1 F Felisberto1,1,1 L Constantino1,1,1 F Vuolo1,1,1 F Cardoso2,2,2, F Mina1,1,1, CT de Souza1,1,1, FG Soriano1,1,1, EL Stecke1,1,1, C Ritter1,1,1, JCF Moreira1,1,1, R Roussel1,1,1,1, G Schwartsman1,1,1,1,1,1, AV Schally1,1,1,1,1,1, F Dal-Pizzol1,1,1,1,1

1 University of Southern Santa Catarina – UNESCO, Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Criciuma, Brazil; 2 University of Southern Santa Catarina – UNESCO, Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Criciuma, Brazil; 3 Sao Paulo University, Department of Internal Medicine, Academic Hospital, Sao Paulo, Brazil; 4 Federal University of Rio Grande do Sul, Center for Oxidative Stress, Department of Biochemistry, Institute for Basic Health Sciences, Porto Alegre, Brazil; 5 Federal University of Rio Grande do Sul, Department of Pharmacology, Institute for Basic Health Sciences, Porto Alegre, Brazil; 6 Federal University of Rio Grande do Sul, Cancer Research Laboratory, University Hospital Research Center (CPE–HCPA), Porto Alegre, Brazil; 7 Federal University of Rio Grande do Sul, National Institute for Translational Medicine, Porto Alegre, Brazil; 8 Federal University of Rio Grande do Sul, Department of Internal Medicine, Porto Alegre, Brazil; 9 Divisions of Endocrinology and Hematology-Oncology, University of Miami Miller School of Medicine, Veterans Affairs Medical Center, Miami, FL, USA

Introduction

In lethal polymicrobial sepsis, toll-like receptor 4 (TLR-4) mediates a critical role in impeding the migration of neutrophils to infectious...
foci, thereby favoring increased bacteremia and ultimately leading to mortality. We have previously shown that the selective gastrin-releasing peptide receptor antagonist RC-3095 can reduce organ dysfunction in experimental sepsis. Thus the aim of the present study is to report a novel link between GRPR and TLR-4 signaling and its relationship with inflammatory parameters in vivo and in vivo experimental models as well as in sepsis patients.

Methods For the in vitro experiments, RAW 264.7 macrophages were stimulated with LPS and treated with RC-3095 or RT-PCR analyses of TLR-4 mRNA, immunoblotting of pERK1/2, pJNK, pAkt, and EMSA of NF-kB and activator protein 1 (AP-1). In in vivo studies, male Wistar rats were divided and submitted, into sham surgery, cecal ligation and puncture (CLP) surgery, and CLP plus RC-3095. Six hours after, all rats were anesthetized and sacrificed by cardiac puncture. Blood was collected for bacterial count and cytokine analyses; bronchoalveolar lavage fluid for cell count, levels of TLR-4 and cytokines; peritoneal lavages for bacterial count; and lung tissue for levels of TLR-4 and RT-PCR analyses of TLR-4 mRNA. In a human study 12 patients, admitted to an adult medical ICU with a clinical diagnosis of sepsis, were enrolled. Patient sera were screened for the presence of GRPR antibodies directed against Cer, CD14, and Fas. In a loss of function experiment, RAW 264.7 macrophages were treated using specific antibodies directed against Cer, CD14, and Fas. In vivo experiments as well as in vivo experimental models as well as in sepsis patients.

Results RC-3095 inhibited expression of TLR-4 and reduced phosphorylation of extracellular signal-regulated kinase (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and Akt, leading to decreased activation of NF-kB and AP-1 in macrophages. A rat model of sepsis, RC-3095 treatment decreased lung TLR-4 content, reduced the migration of inflammatory cells to the lung, reduced systemic cytokine levels, and attenuated bacterial dissemination. Continuous infusion with RC-3095 for 12 hours decreased IL-6 plasma levels in septic patients, but did not significantly affect IL-10 plasma levels.

Conclusions These findings demonstrate the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving inhibition of TLR-4 signaling.

Acknowledgements The present work was supported by the National Council for Scientific and Technological Development (CNPq), the South American Office for Anticancer Drug Development (SOAD, Porto Alegre, Brazil), and the National Institute for Translational Medicine (INCT program).

P47 System biology of multiple organ dysfunction: formation of a ceramide-enriched macro-domain in SIRS/sepsis

I Suckert, GP Otto, P Urban, B Acht, MJ Dorer, AC Bunck, DC Hupe, M Bauer, RA Clauss
Jena University Hospital, Clinic for Anaesthesiology and Intensive Care, Jena, Germany

Generation of bioactive lipids such as ceramide (Cer) and the formation of Cer-enriched macromdomains are regarded as mediators of SIRS and the development of multiple organ failure. Therefore, we addressed the question of whether there is a difference in the plasma activity of the secreted isoform of the Cer-forming enzyme sphingomyelinase (SMPD1) in patients, admitted to an adult medical ICU with a clinical diagnosis of sepsis, but did not significantly affect IL-10 plasma levels.

Conclusions These findings demonstrate the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving inhibition of TLR-4 signaling.

Acknowledgements The present work was supported by the National Council for Scientific and Technological Development (CNPq), the South American Office for Anticancer Drug Development (SOAD, Porto Alegre, Brazil), and the National Institute for Translational Medicine (INCT program).

P48 Predicting organ failure at 24 hours from early clinical data in an ovine pneumonia-sepsis model

BW Footer1, S Rehberg2, HM Linge1, DM Parish3, P Enkhbaatar4, LD Traber1, EJ Miller5, DL Traber1, JJ Schentag6

1University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA; 2CPL Associates LLC, Buffalo, NY, USA; 3The University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX, USA; 4The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, USA Critical Care 2010, 14(Suppl 2):P48 (doi: 10.1186/cc9151)

Introduction Having the ability to predict organ failure could impact treatment decisions and potentially lessen the consequences of acute lung injury (ALI) and sepsis. While Acute Physiology and Chronic Health Evaluation (APACHE III) and the Pneumonia Severity Index are useful in predicting the risk of morbidity and mortality, they do not predict the risk of developing organ failure. Currently no accepted practice allows for the prediction of the development of organ failure. The objective, therefore, of our study was to predict the development of organ failure at 24 hours using only the data available from the first 4 hours post-inoculation.

Methods This pneumonia-sepsis model included 19 sheep with All Inoculation of ~2.5 x 109 colony-forming units methicillin-resistant Staphylococcus aureus (MRSA) induced pneumonia, while smoke injury was created through inhalation of cotton smoke. Four different groups were studied and are as follows: MRSA and smoke inhalation (M+S), MRSA and smoke inhalation combined with endotoxin (M+S+ET), and smoke inhalation only (S, n = 6). In order to use the injury group as a model input, all the sheep were modeled independent of group and a rank order of severity was determined. Additional inputs included a number of clinical and laboratory parameters. Only the first 4 hours of data were allowed to be used as an input. The model outputs were prothrombin time (PT) and mean arterial pressure (MAP) over the entire 24-hour time frame. To minimize overparameterization, only two inputs per output were used for prediction.

Results The rank order of injury group from least to greatest severity was M+T, S, M+T, S, M+T. PT was best predicted by calcium and injury. The agreement between predicted and measured PT using only calcium as the input was R² = 0.24. Adding the second input, in this case injury group, improved the model’s predictive ability (R² = 0.48). MAP was best predicted by lactate with an agreement between predicted and measured of R² = 0.64. Unlike PT, the model was not able to better predict MAP by adding a second input (R² = 0.64).

Conclusions Our model was able to provide an accurate prediction of MAP using only the first 4 hours of data, while PT was less accurately predicted. However, this early study suggests that continued refinement of the progression model could provide a viable tool to predict organ failure in sepsis.

P49 Modeling sepsis induced by methicillin-resistant Staphylococcus aureus infection: a human/ovine approach

JJ Schentag1, S Rehberg2, BW Footer1, P Enkhbaatar1, HM Linge1, LD Traber1, EJ Miller5, DL Traber1

1University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA; 2CPL Associates LLC, Buffalo, NY, USA; 3The University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX, USA; 4The Feinstein Institute for Medical Research, Center for Heart and Lung Research, Manhasset, NY, USA Critical Care 2010, 14(Suppl 2):P49 (doi: 10.1186/cc9152)

Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is an invasive pathogen in critically ill patients, and is commonly the cause of nosocomial pneumonia. Infection with MRSA can lead to bacteremia, septic shock, and multisystem dysfunction. Previous work has demonstrated that a
MRSA pneumonia-sepsis model in sheep mimics the vascular state in human sepsis. In the present study, we sought to combine sheep and clinical data from humans to determine whether common parameters existed across species with regard to coagulopathy. Secondly, we wanted to model and provide estimates of MRSA bacterial load in both species.

Methods Nineteen sheep with acute lung injury and 14 human patients were incorporated into this sepsis model. In sheep, pneumonia was induced by inoculating the airway with 2.5 × 10^8 colony-forming units (CFU) MRSA. Thirteen of the sheep had smoke injury induced through inhalation of cotton smoke. All human patients were retrospectively studied and were bacteremic with MRSA from varying primary infection sites. Initial bacterial load in humans was modeled using clinical and microbiologic data available at the start of sepsis, while the initial load in sheep was the inoculating amount of bacteria. Load continues throughout the study period and is modified by vital signs and antibiotic coverage. The bacterial load as well as clinical and laboratory parameters are inputs, with the output parameter being prothrombin time (PT).

In order to minimize overparameterization of the population, the model was allowed to estimate PT using only three parameters. Data were modeled for 24 to 48 hours.

Results Bacterial load was estimated to range from between 10^6 and 10^8 CFU, with the high end of the range being similar to the inoculum used to induce pneumonia in the sheep. The highest-ranking parameters in estimating PT were calcium, potassium, and bacterial load. When using calcium alone, the model estimate agreement with measured PT was r^2 = 0.25. Combining calcium and potassium improved agreement (r^2 = 0.34), while using all three parameters further improved the estimate (r^2 = 0.37).

Conclusions Through progression modeling we were able to provide prediction of coagulopathy and bacterial load across two different species of animals infected with the same organism.

PS0 Identification of immune modulators using a phage library displaying Staphylococcus aureus secreted proteins
C Feve, J Van Strijp, P J Haas
University Medical Center Utrecht, Medical Microbiology, Utrecht, The Netherlands Critical Care 2010, 14(Suppl 2):P50 (doi: 10.1186/cc9153)

Understanding the mechanisms of bacterial immune modulation will teach us more about the pathogenesis of infection and could lead to new strategies in anti-inflammatory therapy during sepsis. Various approaches are already used to identify bacterial immune modulating proteins. However, these are inefficient and time consuming. Immune modulating proteins need to be secreted in order to act on their targets outside the bacterial cell. In the present study, phage display technology was used to specifically identify secreted modulating proteins with high efficacy.

Phage display technology is a technique to express a protein fused to a coat protein of a filamentous phage. The most widely used coat protein is pIII allowing for rapid identification of selected proteins. As a proof of principle, a Staphylococcus aureus library was constructed. The goal is to evaluate the proportion of previously described secreted immune modulators that can be recovered and to identify new immune modulators. In order to express most of the 300 secreted proteins encoded by this microorganism, the library reached a diversity of 108 clones. The secreteme phage library was screened for interaction with leukocytes and for modulation of the coagulation and complement pathways, which are highly activated in sepsis process.

PS1 Building up an infection control strategy based on the e-health concept
C Paiso, A Pedrosa, J Mapril, C Alices
1Hospital da Luz, Infection Control Committee, Lisbon, Portugal; 2Siemens Medical Solutions, Hospital da Luz, Lisbon, Portugal Critical Care 2010, 14(Suppl 2):P51 (doi: 10.1186/cc9154)

Introduction Healthcare-associated infection (HAI) control is one of the most important challenges in quality and safety. Defined as the intensive use of the information and communication technologies, e-health can be a major part of this matter. Aiming for implementation of an infection control strategy based on the e-health concept in a 280-bed, paper-free, general hospital, the Infection Control Committee (ICC), along with the Quality and Antibiotics Committee and the IT team, has been working on the implementation of new tools for widespread use.

Methods The authors used the electronic medical record, a special program for infection surveillance and data-mining, and some additional resources, such as messages and alerts sent by email or by SMS, as a global approach for improving infection control. On the electronic medical record (Soarian®; Siemens Medical Solutions), interventions are made at different levels. On patient admission, through the fulfillment by the physician of a questionnaire on detection of increased risk for infection/colonization, several protocols regarding isolation and screening testing are automatically activated and the ICC is informed via email, thus minimizing the spread of epidemiologically important microorganisms. During hospitalization, new templates for prescribing microbiological tests are in progress to improve the availability of clinical information to the laboratory and to the Vigiguard® (Biomerieux) program. New context-sensitive templates for antimicrobial prescription are being implemented to improve the quality of such therapeutics. Alerts to the pharmacy are sent when there is some inaccuracy in terms of the chosen antimicrobial or the duration of therapy, thus reducing the emergence of new drug resistances and minimizing costs.

New fields were created to individualize infection control issues in the patient’s history, and to generate an automatic note on epidemiologically important issues at the transfer or discharge of the patient, thus complying with the recommendations for information transfer. Finally, surveillance of several infections/colonizations will be obtained in real time from Vigiguard®, a tool with a data-mining engine.

Conclusions The authors hope that the application of the e-health concept to the infection control policy in a paper-free hospital will improve quality of care and reduce the risk of HAI.

PS2 Elimination of cytokine and soluble cytokine receptors by carbon sorbents from blood
N Anisimova, M Kiselevsky, E Gromova, L Kuznetzova

Introduction As has been seen in several studies, many authors describe details of different cytokines’ elimination from blood by carbon sorbents. Some data have been published about carbon immobilization of cytokines bounded and nonbounded in complexes with specific cytokine receptors. The aim of the present study was to research cytokine and soluble cytokine receptor elimination by carbon sorbents from blood.

Methods The blood samples from 28 cancer patients with sepsis before and after extracorporeal detoxification by Adsorba 300C (Gambro, Sweden) were analyzed. The sorbent washouts were also tested. We evaluated cytokine levels (IL-1 β, IL-6, TNFβ) and their soluble receptors (sIL-1RII, sIL-6R, sTNFRI) in the samples.

Results Our experiments showed that, after hemoperfusion, the cytokine levels in blood decreased or did not change compared with the initial cytokine level. At the same time the soluble cytokine receptor level increased considerably after the procedure (from 1.7 to 2.6 times). The cytokine level in the sorbent washouts was also very high. Therefore, the soluble receptor level was lower in the washouts than in the serum.

Conclusions These results can partially be explained by the ability of carbon sorbent to eliminate cytokine molecules more actively than cytokine receptors. Therefore, it is tempting to suppose that carbon hemosorption leads to a considerable reduction of serum cytokines, bounded and soluble, but preserves the soluble receptors. These peptide molecules play an important role in the formation of adequate anti-inflammatory response.
Regulation of neutrophil chemotaxis by toll-like receptor 9 is important for sepsis survival

SC Trelivin, JC Alves-Filho, F Sándera, W Turato, D Nascimento, FO Souto, TM Cunha, R Gazzinelli, F de Queiroz Cunha
1 School of Medicine of Ribeirão Preto, University of São Paulo, Department of Pharmacology, Ribeirão Preto, Brazil; 2 School of Medicine of Ribeirão Preto, University of São Paulo, Department of Immunology and Biochemistry, Ribeirão Preto, Brazil; 3 Federal University of Minas Gerais, Belo Horizonte, Brazil

Introduction Successful clearance of bacterial infection depends on efficient neutrophil migration to infected tissues [1]. Chemotaxis is a crucial event for neutrophil migration to local infection and is controlled mainly through activation of G-protein-coupled receptors. Furthermore, the functionality of these receptors is regulated by G-protein-coupled receptor kinases (GRKs) [1]. Impaired chemotactic responses in sepsis was correlated with dysregulated neutrophil toll-like receptor (TLR) signaling, TLR2 and TLR4, while TLR9 inhibition in dendritic cells was associated with reduction of mortality in polymicrobial sepsis [2]. Despite the TLR9 expression, the role of this receptor in neutrophil chemotaxis has not been studied. Thus, the aim of the present study was to verify the importance of TLR9 activation on neutrophil chemotaxis during sepsis.

Methods C57BL/6 wildtype (WT) and TLR9−/− mice were submitted to the cecal ligation and puncture (CLP) sepsis model and the survival rate was evaluated over 7 days. Also, neutrophil migration to the peritoneal cavity was measured by flow cytometry and immunofluorescence, respectively. CT 2001 experiments were performed in accordance with the ethical guidelines of the School of Medicine of Ribeirão Preto, University of São Paulo (protocol number 150/2009).

Results TLR9−/− mice submitted to CLP had an enhanced survival rate when compared with WT mice (P = 0.096), and these knockout mice had increased the neutrophil migration to infectious focus (P = 0.0445). Investigating the mechanism by which the deficiency of TLR9 could recover neutrophil migration, it was observed that neutrophil derived from TLR9−/− CLP-treated mice had restored the ability to migrate in vitro (chemotact assay) toward MIP-2, CXCR2 ligand (P = 0.0133). Moreover, the recovery in neutrophil chemotaxis was associated with an enhancement in CXCR2 expression on the neutrophil surface and a reduction in GRK2 induction.

Conclusions In sepsis, TLR9 activation, similar to that previously observed with TLR2 and TLR4, can also be harmful to control bacterial growth, because it impairs neutrophils from reaching the infection focus.

Acknowledgements This presentation was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq).

References

Endocarditis (endothelial cell-specific molecule-1) as a pertinent biomarker of endothelial dysfunction in sepsis

E Parmentier1, N de Freitas Caieres2, B Grigonu3, J Paste4, A Palud1, M Delehedde1, D Mathieu1, A Scherpereel1, P Lassalle2, A Palud3, J Pastré3
1 CHRU de Lille, Pole de Réanimation, Lille, France; 2 Institut Pasteur de Lille, Inserm U1019, Lille, France; 3 Lunginnov, Institut Pasteur de Lille, Lille, France; 4 CHRU de Lille, Pole Pneumologie, Lille, France

Introduction One of the main players in the severity of sepsis is the endothelium integrity. Endocarditis, also called endothelial cell-specific molecule-1 (ESM-1), was shown to be preferentially expressed in lung vasculature. Structurally, endocard/ESM-1 is a 50 kDa proteoglycan that can interact with ICAM-1 and LFA-1 integrins and consequently prevents inflammatory events. In an experimental rat endotoxic shock model, we previously showed that a decrease in the leukocyte–endothelial cell contacts (induced by drugs) is clearly linked to an increase of blood endocard levels. Blood levels of endocard/ESM-1 were also shown to be associated with the severity and evolution of septic states in preliminary studies.

Methods We have designed a prospective observational larger clinical study with 125 septic patients recruited to assess endocard/ESM-1 blood levels concomitantly with a comparison with survival at D10, severity score (SAPS II) at D2 and D7, and levels of inflammatory cytokines. ICU patients were followed over a 28-day period. Time course kinetics of serum endocard/ESM-1 at D0, D2, and D7 were performed using an ELISA assay (EndoMark H1; Lunginnov).

Results Our preliminary results for 39 patients showed that endocard/ESM-1 blood levels were increased at ICU admission in patients with poor prognosis (severe sepsis and septic shock). The monitoring of plasma endocard/ESM-1 at D2 and D7 revealed sustained elevated endocard levels in patients deceased within D10 (n = 12). By contrast, the endocard levels fall down as early as D2 in patients who survived at D10 (n = 27). Among the other molecules evaluated in this study, only anti-inflammatory IL-10 presented similar variations to endocard/ESM-1. These results suggest that both endocard/ESM-1 and IL-10 may have potent predictive values for patient follow up.

Conclusions We have demonstrated that a simple, accurate, and blood-based biomarker such as endocard/ESM-1 (EndoMark H1; Lunginnov) could assess inflammatory events and endothelial dysfunction in patients, and therefore would be hugely helpful for clinicians to predict outcome and to select more appropriate therapeutic strategies.
Epidemiological situation of Crimean-Congo hemorrhagic fever
S Chinikar, SM Ghiasi, M Moradi
Pasteur Institute of Iran, Arboviruses and Viral Hemorrhagic Fever Laboratory (National Reference Laboratory), Tehran, Iran

Introduction
Crimean-Congo hemorrhagic fever (CCHF) is a viral zoonotic disease with up to 50% mortality rate in humans and belongs to the Nairovirus genus and Bunyaviridae family. CCHF manifests with four distinct phases including incubation, prehemorrhagic, hemorrhagic, and convalescence. The virus is transmitted to humans by infected tick bite, handling of infected blood or tissues, or nosocomially. In the present study, serological and molecular epidemiology of CCHF infection was surveyed among the Iranian population during the past decade.

Methods
From 2000 to 2010 (30 May), probable sera of the human population throughout the country were collected. Then, the sera were analyzed through serological (IgM and IgG specific ELISA) and molecular (gel-based and real-time RT-PCR) testing.

Results
As the results show, among 1,377 human probable sera collected from different parts of the country, 544 human cases were confirmed for CCHF and 79 CCHF death cases were reported to date. Sistan and Baluchistan (383 confirmed cases), Isfahan (44), Fars (26), Tehran (17), and Khorasan (12) were the most infected provinces, respectively. Slaughterers, butchers, and farmers, with 21.6%, 17.64%, and 17.46%, ranked the highest among professions, respectively. Also, 52.2% of confirmed cases were in an age range of 21 to 40 years and, interestingly, CCHF infection was shown in males (77.5%) more than females (22.5%).

Conclusions
Although CCHF has been confirmed in 23 out of 30 provinces of Iran, the disease has occurred with the highest grade in Sistan and Baluchistan during the past decade, certainly because of its proximity to Pakistan and Afghanistan, two countries with endemic CCHF. In the present study, it was demonstrated that CCHF was seen much more in the active age range and is more common in high-risk professions related to livestock such as butchers, slaughterers, and farmers. Therefore, it seems, informing the groups of high-risk professions has been efficient. Fortunately, with precise surveillance and laboratory detection, the mortality rate has been remarkably decreased recently.
P57
The effect of gender on cytokine synthesis and outcomes of patients with severe sepsis
Leonidia Leonidou, Athenasia Mousazi, Venezana Kyriazopoulou, Harris Bassaris and Charalambos Gogos
1Patras University Medical School, Department of Medicine, Patras, Greece

Objectives Men are at greater risk for sepsis than are women. Numerous experimental data suggest enhanced immune response and better outcomes in females with severe sepsis compared to males. Nevertheless, clinical data in humans are conflicting. The aim of the present study was to evaluate the gender differences in patients with severe sepsis in terms of survival and pro- as well as anti-inflammatory cytokines.

Patients and methods The study included 56 patients with severe sepsis. The patients were divided into 2 groups according to gender: females (group F, n = 27) and males (group M, n = 29). Severe sepsis was defined as the presence of confirmed infection and ≥ 2 of the following criteria: (a) a temperature > 38°C or < 36°C, (b) heart rate > 90 beats/min, (c) respiratory rate of > 20 breaths/min (d) WBC > 12,000 or < 4,000 cells/mm³ plus at least 1 organ dysfunction indicated by the following: (a) hypotension, (b) > 2.0 mm Hg without evidence of primary respiratory tract disease, (c) pH < 7.3 or a base deficit of ≥ 5 meq/liter, (d) urine output, < 30 ml/h, (e) liver dysfunction, (f) acute alteration of mental status, or (g) DIC. The severity of sepsis was classified by the sepsis-related organ failure assessment score (SOFA). Levels of the proinflammatory cytokines TNF-α and IL-6 and anti-inflammatory cytokine IL-10, as well as TGF-β 1 were measured within 24 hours after admission (mean ± SEM, pg/ml).

Results Group F had similar age (70.8 ± 2.3 vs 70.5 ± 3.5 y) and SOFA score (3.3 ± 1.0 vs 3.4 ± 0.5) with group M. All women were at menopause. Patients of both groups had similar levels of IL-6 (101.3 ± 27.2 vs 120.2 ± 18.6, p = 0.4) and similar levels of IL-10 (31.9 ± 13.1 vs 26.5 ± 14.8, p = 0.7). There was no difference in TNF-α levels (32.8 ± 17.0 vs 35.9 ± 17.5, p=0.4) and TGF-β 1 (32.8 ± 7.7 vs 19.7 ± 2.6, p = 0.2) between the two groups. Seven out of 27 females (5.3%) and 5 out of 28 males (7.2%) patients died (difference not significant).

Conclusion Male patients with severe sepsis do not seem to have a different immune profile and prognosis from females. Further work is needed to determine the influence of gender on outcome of severe sepsis. Studies must pay careful attention to matching the males and females for the many potential confounding variables and evaluating the role of sex hormones in sepsis.

P58
Withdrawn

P59
Success stories about pneumonia caused by Panton-Valentine Staphylococcus aureus
Elisabeth Paramythiotou, Frantzeska Frantzeskaki, Efrosini Dimitriadou, George Dimopoulou, Iraisik Tsangaris, George Tskanis, Maria Theodorakopoulou, Apostolos Armaganidis
Attikon University, ICU, Haidon, Athens, Greece

Background Panton-Valentine leukocytad (PVL) is a pore-forming toxin secreted by some Staphylococcus aureus strains and associated with necrotizing pneumonia in healthy adults. We herein describe 3 cases of life-threatening pneumonia in immunocompetent adults caused by MSSA strain in the first and MRSA strain in the other 2 cases. In all cases, strains were producing PVL. Case 1. A 17-year-old male was admitted to the ICU with severe community-acquired pneumonia. He presented acute respiratory distress, severe hypoxia, and hemodynamic instability. Staphylococcus aureus methicillin sensitive was isolated from his tracheal secretions. He received linezolid and clindamycin. After a temporary amelioration, he presented a ventilator-associated pneumonia due to MDR Klebsiella pneumonia strain, which was cured with colistin. New sepsis episodes due to pleuritic fluid collection were cured with the evacuation of the pleuritic fluid. He was discharged from the ICU after 25 days. Case 2. A 33-year-old woman was admitted to the ICU due to a necrotizing pneumonia caused by a strain of a PVL methicillin - resistant strain of Staphylococcus aureus. She received linezolid and clindamycin and became afebrile after 15 days. A tracheostomy was needed because the weaning from mechanical ventilation was difficult. She was discharged from the ICU to the step-down unit after 34 days. Case 3. A 32-year-old male was admitted to the ICU due to a necrotizing pneumonia with empyema and bacteremia due to a MRSA strain of Staphylococcus aureus producing PVL. The patient developed ARDS and septic shock. He was treated with linezolid, daptomycin, and a thoracic decortication. The patient was discharged a month later from the ICU.

Results Necrotizing pneumonia due to PVL often affects healthy young adults causing life threatening situations. PVL has been well described in CA-MRSA while the PVL gene is found much less frequently in MSSA.

Conclusion Most cases of severe necrotizing pneumonia are caused by community - acquired MRSA or MSSA. Empirical therapy for these conditions should cover this organism. Early treatment is necessary for a good outcome.

P60
Clinical characteristics and coagulative state in patients with sepsis complicated with cavernous sinus thrombosis
Mariam Gigaauri,1 Maradi Otsashvili2, Nino Gigaauri,3 Elene Goginashvili3
11. Buchrodisvili Antisepsis Center, Department of Infectious Diseases, Tbilisi, Georgia, 2Pharmaceutical Company Bilim, Department of pharmacological sciences, Tbilisi, Georgia, 3Medical School “Izet”, Faculty of Medicine, Tbilisi, Georgia

Introduction Cavernous sinus thrombosis is usually a rare condition, but it is an important consideration because of potential morbidity. It is typically septiceptic in origin and facial infections, most notably nasal infections, sphenoidal and ethmoidal sinusitis, dental infections, etc. are the source of pathogen.

Objectives To study clinical cause and blood coagulation state of patients with sepsis who developed cavernous sinus thrombosis and identify possible complications.

Methods Retrospective data analysis of patients who were admitted to Antisepsis Center of Georgia with cavernous sinus thrombosis as a complication of sepsis over the last 20 years. All the patients included in the research had no preceding disease before developing infection and their age ranged from 15 to 35 years.

Results 12 patients were admitted to Antisepsis Center with sepsis and cavernous sinus thrombosis. In 83% of cases mechanical irritation of furuncles in nasal and perioral area served as a place of bacterial invasion in the bloodstream; 17% were maxillary sinusitis. Disease had a rapid onset and all patients soon developed septic fever, chills, exophthalmos, and pneumonia. Additional complications were also reported: meningococcal cephalitis in 75% of cases, pneumothorax 16%, retrobulbar abscess 8%. Hemoculture and serological tests confirmed Staphylococcus aureus as a pathogen. Blood coagulation tests reflected disseminated intravascular coagulation (DIC) with rapidly declining platelet count, prolonged PT and aPTT, fibrin degradation products in plasma, and low levels of antithrombin III. Overall mortality rate was 25%, actual cause of fatal outcome being septic shock.

Conclusions Early recognition and immediate initiation of proper treatment was associated with positive outcome. According to our results,
cavernous sinus thrombosis should be suspected in every case when sepsis is a complication of facial infection and when soon after the onset of disease the patient develops palsy of one or more cranial nerves. Proper treatment should be initiated after confirmation of diagnosis by neuroimaging and blood tests. All cases of fatal outcome were the result of late diagnosis and delayed start of treatment, which caused severe complications: multiple microthrombi in different organs secondary to DIC, meningocencephalitis, and septic shock.

P61
Withdrawn

P62
The expediency of different biomarkers’ use for diagnostics and monitoring of perinatal sepsis treatment of newborns with surgical pathology
Gennadiy Khanes1
1Ukrainian National Pediatric Hospital OkhMatDyt, Neonatal Surgery, Kyiv, Ukraine

Background The main role in perinatal sepsis appearance is played by intranatal and contamination infections, both bacterial and fungal, and immature immune biologic activity of an organism. The redundant secretion of cytokines (interleukins) happens under the influence of bacterial, viral, and fungal toxins; also the humoral and cell immunity is disordered due to discharge of bacterial antigens and of complement system and coagulatory hemostasis disorder.

Materials Treatment of newborns with postoperative and bone and joint sepsis showed that during 3 days of the disease critical values of coagulatory tests such as APTT -> 50 sec, TT - clot absence, PDF >8, and Fn < 1 g/l occurred. Also the correlation of these tests and level of procalcitonin (PCT) was observed.

Results The level of PCT > 10 µg/l was observed during intestinal perforation, peritonitis, aspiration pneumonia; it exceeded 2 µg/l during pyelonephritis development against the background of different kidney malformations or tumors. The high level of C-reactive protein (CRP > 24 mm/l) was observed in early stages of the disease in cases of severe sepsis and only 2 weeks after the beginning of the disease in case of SIRS. The undertaken monitoring shows that normalization of coagulatory tests is connected with effective surgical treatment, adequate antibacterial therapy, introduction of specific immunoglobulin, and, to a lesser extent, with using protease inhibitors. The main point in diagnostics and treatment of perinatal sepsis is the determination of the etiologic factor of bacterial, viral, or fungal origin by serologic and PCR methods. The determination was made during the treatment of all patients and informed adequate therapy. This investigation showed that bacterial infections caused sepsis in 90% cases and viral in 10%. The 30% of clinical observations showed the presence of fungal infections as well.

Conclusions The coagulatory tests, the evaluation of humoral immunity by the presence of specific antibodies, and the continuous evaluation of PCT level are the most effective for early diagnosis of perinatal sepsis in newborns with surgical pathology.

P63
The experience of treatment of postoperative Gram-negative sepsis using specific immunoglobulin
Gennady Khanes1, Larysa Parkhomenko1
1Ukrainian National Pediatric Hospital OkhMatDyt, Neonatal Surgery, Kyiv, Ukraine; 2Institute of Infectious Diseases of the Academy of Medical Sciences of Ukraine, Immunologic, Kyiv, Ukraine

Background Fifty to 60% of newborns operated on for congenital malformation of gastrointestinal tract organ development have postoperative sepsis. Despite use of modern antibiotics and antifungal medications, the mortality of this group of patients is about 60 to 70%.

Materials and Methods When observing 60 infants with postoperative sepsis after surgery for esophageal atresia, necrotic enterocolitis, peritonitis, bowel obstruction, and making bacteriological and serological investigations, we have discovered that the etiology was Gram-negative infection with Pseudomonas aeruginosa, Escherichia coli, or Enterobacter aerogenes, which, in 63% of cases, was combined with MRSAs. The level of sepsis severity was determined by hemocoagulation tests and procalcitonin level. The prolongation of prothrombin time, increase of products of fibrin and fibrinogen degradation, and abrupt reduction of platelet level <50,000 were typical for severe sepsis. At the same time, the level of procalcitonin increased rapidly, especially in newborns with peritonitis and hollow organ perforation (> 10 µg/ml). Initial antibiogram showed high resistance of the infection. We used specific immunoglobulin-containing antibodies against Pseudomonas aeruginosa, Escherichia coli, and MRSAs for above-mentioned newborns and infants. The medicine was introduced in dose 0.2 ml/kg 1 time in 2-3 days, on average 3-4 doses.

Results Increase of complementary activity of blood, recovery of bacterial flora sensitivity to standard antibiotics was observed in all infants. The use of immunoglobulin specific to Gram-negative microflora promoted patients’ recovery.

Conclusions Accurate determination of the etiologic factor requires use of serological methods. The most accurate determination of sepsis severity is level made by changes of hemocoagulation system and level of procalcitonin. Using specific immunoglobulin in treatment of postoperative sepsis in infants allows improvement of the treatment results.

P64
Bacteremia caused by Enterococcus faecium and modifications in the antimicrobial resistance profile during the past 5 years
Ana García-Tapia1, Fátima Galán-Sánchez2, Fernando Gil de Sola1, Pilar Marín1, Pedro García-Martos1, Clotilde Fernández2, Manuel Rodríguez-Iglesias2
1Puerta del Mar Univ Hosp, Clinical Microbiology Lab, Cádiz, Spain

Introduction Enterococci are becoming an important cause of nosocomial infections, including bacteremia, endocarditis, and surgical wound infections. Optimal antimicrobial therapy requires the use of synergistic combinations of a cell wall-active agent such as penicillin or a glycopeptide and an aminoglycoside. Enterococci with ampicillin resistance and high level aminoglycoside resistance (HLAR) are the cause of considerable therapeutic problems, aggravated by acquired vancomycin resistance. The aim of the present study was to investigate how prevalent ampicillin resistance is in Enterococcus faecium caused by Enterococcus faecium and the modification of antimicrobial resistance profile.

Methods From January 2005 through April 2010, 52 strains of E. faecium were isolated from blood cultures that were consecutively received in the Puerta del Mar University Hosp. (Cádiz, Spain) from hospitalized patients corresponding to medical area (34.6%), surgery (30.7%), ICU (19.2%), and pediatric area (15.3%). In this period Enterococci bacteremia in our hospital was 8% corresponding to E. faecium in 20.8% of the isolates. The blood cultures were done in Versatrek System and the strains were identified by automated method (Wider, Soria Melguizo) following manufacturer’s indications.

Results Fifty-two strains of E. faecium were isolated from blood cultures during the study period. The ampicillin resistance was high (84.6%) but we did not find glycopeptide resistance (vancomycin and teicoplanin). HIAL was 75.0% for streptomycin (HLSR) and 13.4 % for gentamycin (HLGR). Concomitant resistance to both aminoglycosides was rare (11.5%). Only 3 and 1 strains were resistant to quinupristin/dalfopristin and linezolid, respectively. The resistance to levofloxacin was high (80.7%). We have detected a predominant resistance profile that includes non-susceptibility to ampicillin, quinolones, and HIAL, with susceptibility to gentamycin and glycopeptides. This profile is increasing its frequency from 50% in 2005 to 85.7% in the first third of 2010.

Conclusions Treatment with fluoroquinolones, cephalosporins, or carbapenems has been described as a risk factor for the development of an E. fae-

 Summary of the results for the year 2010

- Fifty-two strains of E. faecium were isolated from blood cultures.
- Ampicillin resistance was high (84.6%).
- No glycopeptide resistance was observed.
- Resistances to streptomycin and gentamycin were common (75.0% and 13.4%, respectively).
- Concomitant resistance to both aminoglycosides was rare (11.5%).
- Three and one strains were resistant to quinupristin/dalfopristin and linezolid, respectively.
- Resistance to levofloxacin was high (80.7%).
- A predominant resistance profile was detected, including non-susceptibility to ampicillin, quinolones, and HIAL, with susceptibility to gentamycin and glycopeptides.
- The resistant profile is increasing its frequency from 50% in 2005 to 85.7% in the first third of 2010.
has also been observed in our hospital during the past 5 years. In conclusion, bacteremia caused by ampicillin-resistant *E. faecium* is a problem in our area. This may necessitate a change in the treatment of Enterococcal infections from ampicillin to vancomycin, which in turn increase the risk of spread of vancomycin resistance now not present in our hospital.

P65

Sepsis and acute lung injury
Malvina Javakhadze1,2, Mariam Giauri1, Nino Chincharadze1, Medea Darasel1
1Antisepsis Center of Georgia, Infectious disease, Tbilisi, Georgia, 2Tbilisi State Medical University, Infectious disease, Tbilisi, Georgia

Background The most frequent respiratory complication associated with sepsis is ALI (Acute Lung Injury). At the same time ALI total cases account about 40% of severe infections. The crucial factors for development of ALI are: the type of infectious agent, genetic background, condition of immune system of the patient, coexisting disorders, systematic inflammatory reactions, and multi-organic insufficiency.

Materials and Methods We present a retrospective study containing the analysis of histories of patients with sepsis and other severe bloodstream infections who were hospitalized and were being treated in Akad V Bochorishvili named Antisepsis Center of Georgia over 4 years. We studied 264 and 191 cases of patients from adult and gynecological departments, respectively. The major cause of hospitalization of all patients was bloodstream infection. This patients were divided into 2 groups according to their health condition before hospitalization: healthy individuals and individuals suffering from chronic/acute respiratory disorders.

Results 168 of 264 patients (41%) from the adult department were reported to have pulmonary/pleural complications; more precisely, 44% of affected patients were admitted with pneumonia, 36% - bronchopneumonia, 23% - infiltration pneumonia, 16% - destructive pneumonia, 31% - pulmonary stroke, 31% - lung infection/infarct-pneumonia, 5% - solitary/multiple pulmonary abscess: 69 of 191 patients (36%) from the department of gynecology have had a history of pleuropulmonary complications: 35% of them developed pneumonia, 21% - bronchopneumonia, 17% - destructive pneumonia, 14% - pyothorax, 7% - pyogenic pleuritis, 6% - pneumothorax.

Conclusion Respiratory complications are the most common complications of sepsis (38%). This category of patients has demonstrated acute pulmonary disorders. The most frequent clinical manifestation in the patients from the second group was lobal pneumonia. On the other hand, the bronchopneumonia was the disorder most frequently reported in the patients from the first group. 8% of patients from both groups developed pleuritis, which was associated with pneumonia. The cases of primary pleuritis were not reported. The infarct-pneumonia developed during septic endocarditis (P < 0.005). ALI resolution depended on the clinical evolution of disease as well as on the involvement of other organs in the pathologic process.

P66

Mycobacterium fortuitum endocarditis in 3 children after ventricular septal defect closure with bovine pericardial patch
Ivana Cirkovic1, Milena Svacic Vlahovic1
1Medical Faculty, University of Belgrade, Institute of Microbiology, Belgrade, Serbia and Montenegro

Introduction Mycobacterium fortuitum, a rapidly growing mycobacteria, is a well-known causative agent of cutaneous infections, post-surgical wound infections, and other health care-associated infections. Endocarditis due to this bacterium is rare and only sporadic cases have been reported so far.

Materials and Methods Herein we describe the cardiac surgery-related outbreak of endocarditis caused by *M. fortuitum* involving 3 pediatric patients. Over a 2-week period, 8 consecutive pediatric patients underwent surgery for correction of ventricular septal defect (VSD). Patch closure of the VSD was performed by using a commercial bovine pericardial patch in all patients. The postoperative hospital stay was uncomplicated for 5 patients. However, 2 months after the surgery diagnosis of infective endocarditis was established in 3 patients. Transthoracic echocardiography revealed vegetations on the tricuspid valve in all 3 patients. Two sets of cultures of blood were taken from each of patient and they yielded acid-fast organisms on incubation Day 5. Reoperation was required in only 1 patient and bovine grafts, as well as vegetations, were submitted for bacteriologic analyses. These samples also yielded acid-fast organisms. All isolates were preliminarily identified as rapid growing mycobacteria and empiric therapy with vancomycin and ceftriaxone was switched to amikacin, ciprofloxacin, and imipenem. The conservative treatment as well as reoperation in 1 patient had favorable outcome and all 3 children are currently doing well.

Results It should be noted that cultural characteristics and susceptibilit patterns of all isolates of acid-fast bacteria obtained were indistinguishable. The isolates were finally identified as *M. fortuitum* by 16S rRNA sequencing. In order to explore possible clonal relatedness of the strains, the isolates were genotyped. ERIC PCR was used since it had been proven as a sufficiently discriminative method for investigation of outbreaks caused by *M. fortuitum*. Identical patterns were obtained for all isolates, confirming that they are clonally related. Several cardiac surgery-related outbreaks caused by NTM, including *M. fortuitum*, have been reported. Most of these outbreaks were surgical wound outbreaks.

Conclusion To our knowledge, the 3 related cases we describe present the first cardiac surgery-related outbreak of endocarditis caused by *M. fortuitum*. Cases of nosocomially acquired *M. fortuitum* endocarditis were previously reported, but only sporadic cases in adult patients and they were usually fatal. In contrast, we describe the 3 obviously related cases of *M. fortuitum* endocarditis in pediatric patients with favorable outcome.

P67

Impact of severity of sepsis at time of ICU admission on ICU mortality
Deven Juneja1, Omender Singh1, Rohit Dang1, Prashant Nasa1, Manish Gupta1
1Max Super Specialty Hospital, Critical Care Medicine, New Delhi, India

Background Mortality of patients admitted to the ICU depends on various factors with severity of infection being one of them. But there is a dearth of data regarding ICU mortality based on severity grading of sepsis.

Aims To assess the impact of severity of sepsis at the time of admission on ICU mortality.

Figure 1 (abstract P67)
Table 1 (abstract P67). Sensitivity, specificity and predictive values for mortality prediction of five severity-of-illness scoring systems in 132 outbreak patients with confirmed and presumptive Legionnaires’ disease.

<table>
<thead>
<tr>
<th>Severity of sepsis</th>
<th>Mean age ± SD</th>
<th>Sex, males (%)</th>
<th>Mean ICU stay, days ± SD</th>
<th>Vasopressor support</th>
<th>Renal support</th>
<th>Mechanical ventilation</th>
<th>ICU mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n = 718)</td>
<td>58.4 ± 18.3</td>
<td>415 (57.6%)</td>
<td>4.95 ± 5.3</td>
<td>201 (28%)</td>
<td>103 (14.55%)</td>
<td>205 (28.27%)</td>
<td>122 (17.7%)</td>
</tr>
<tr>
<td>No sepsis (n = 231)</td>
<td>54.3 ± 19.6</td>
<td>122 (52.8%)</td>
<td>6 ± 6.3</td>
<td>16 (6.93%)</td>
<td>12 (5.19%)</td>
<td>34 (14.71%)</td>
<td>12 (5.2%)</td>
</tr>
<tr>
<td>SIRS (n = 193)</td>
<td>55.5 ± 16.6</td>
<td>110 (57.2%)</td>
<td>5.2 ± 5.5</td>
<td>39 (20.2%)</td>
<td>25 (12.95%)</td>
<td>3 (16.06%)</td>
<td>15 (7.8%)</td>
</tr>
<tr>
<td>Sepsis (n = 162)</td>
<td>65.9 ± 17</td>
<td>99 (61.1%)</td>
<td>4.2 ± 5.1</td>
<td>34 (21%)</td>
<td>20 (12.34%)</td>
<td>48 (20.63%)</td>
<td>20 (12.3%)</td>
</tr>
<tr>
<td>Severe sepsis (n = 52)</td>
<td>60.88 ± 17.2</td>
<td>36 (69.2%)</td>
<td>4.1 ± 3.1</td>
<td>36 (69.3%)</td>
<td>12 (23.1%)</td>
<td>20 (38.5%)</td>
<td>20 (38.5%)</td>
</tr>
<tr>
<td>Septic shock (n = 80)</td>
<td>60.2 ± 17.2</td>
<td>48 (60%)</td>
<td>3.4 ± 2.4</td>
<td>76 (95%)</td>
<td>34 (42.5%)</td>
<td>55 (68.75%)</td>
<td>55 (68.75%)</td>
</tr>
</tbody>
</table>

Methods: Prospective cohort study in an 8-bed medical ICU of a tertiary care hospital over a period of 20 months. Data regarding patient demographics and ICU course including need for organ support and length of stay were recorded. Severity of sepsis was graded according to international classification. Qualitative data were analyzed using chi-square or Fisher Exact test as appropriate and quantitative data were analyzed using student’s t-test. Inter- and intragroup comparison for quantitative data was done by one-way ANOVA. Primary outcome measure was the ICU mortality, which was compared in patients with different grades of sepsis.

Results: Data from 718 patients were analyzed. There were 231 (32.2%) nonseptic patients, and 193 (26.9%), 162 (22.5%), 52 (7.24%), and 80 (11.1%) patients with SIRS, sepsis, severe sepsis, and septic shock, respectively (table). The most common suspected site of infection was lungs (232/487 patients, 47.6%), followed by urinary tract (102/487 patients, 20.9%) and abdomen (95/487 patients, 19.5%). The ICU mortality according to the severity of sepsis was nonseptic 5.2%, SIRS 7.8%, sepsis 12.3%, severe sepsis 38.5%, and septic shock 68.8%.

Conclusions: Sepsis is common at the time of ICU admission and its severity can have a major impact on ICU outcome. Early grading of sepsis can help in identifying patients who may require organ support and those who are at higher risk of dying during their ICU stay.

P69

Mental disorders in patients with sepsis

Marine Mamulashvili1, Mariam Gigauri1, Tamar Bareladze1, Maradi Otashvili2, Nino Gigauri2, Giorgi Mamulashvili3

1. V. Bochorishvili Antisepsis Center, Department of Infectious Diseases, Tbilisi, Georgia. 2. Pharmaceutical sciences, Tbilisi, Georgia. 3. Medical School “Aseti”, medical faculty, Tbilisi, Georgia. N. Khphishdze Central Hospital, Department of Radiology, Tbilisi, Georgia

Background: Patients with sepsis are at risk of developing altered mental status. In the present research possible triggers of psychiatric manifestations were studied on the example of patients with no preceding mental disorders who developed febrile schizophrenia secondary to sepsis and whose treatment was directed against generalized infection but did not receive psychotropic drugs.

Objective: The aim of our research was to determine the possible cause of febrile schizophrenia and to identify the effective strategy of treatment.

Materials and Methods: Retrospective data analysis of 50 patients (70% women and 30% men) who were admitted to the Antisepsis Center of Georgia over the last 10 years with the diagnosis of febrile schizophrenia. Patients included in the study had no preceding psychiatric disorder and their age ranged from 17 to 43 years. Eighty percent of female patients developed symptoms postpartum and all cases of male patients were cryptogenic. Sepsis diagnosis was confirmed by clinical and laboratory tests with isolation of Staphylococcus epidermidis and aureus from the blood culture and positive anatoxin skin test.

Results: All patients had intermittent episodes of depression and excitation during the prodromal phase. Psychoneurological irregularities were manifested as disorientation to place, time and environment; symptoms of encephalitis, delirium and schizophrenic symptoms. In 40% of cases mental symptoms preceded fever, 35% of cases were characterized by delayed onset of psychiatric symptoms, and in 25% of cases fever and manifestation of mental disorders had simultaneous onset. The treatment of the patients aimed for eradication of infection and correction of homeostatic disturbances and no psychoactive drugs were used. Psychiatric manifestations disappeared with the cure of sepsis. Data of our patients suggest higher correlation of psychiatric symptoms with the generalization of infection than developing high fever. It could be suggested that psychiatric syndromes, including febrile schizophrenia, could be triggered by infectious diseases, particularly sepsis. Of course a combination of diseases (schizophrenia and sepsis) cannot be ruled out, but in our practice combination of diseases was not confirmed.

Conclusion: Staphylococcal sepsis can cause mental disorders including schizophrenic syndromes manifested as amantical-catactic or excited-hallucinatory state. In management of any patient with preceding normal psyche diagnosed with febrile schizophrenia it is important to determine cause of the fever. On the basis of our data if the underlying cause of febrile schizophrenia is staphylococcal sepsis, treatment directed against generalized infection is effective against its mental symptoms too and all the psychiatric symptoms will resolve with the cure of sepsis without any use of psychoactive drugs.
P70 Recombinant human soluble thrombomodulin (rhs-TM) may have an efficacy for sepsis not only for DIC
Reon Naga1, Munekazu Takeda1, Tomoyuki Harada1, Masaru Abe1, Ryuichi Moroi1, Mizuho Namiki1, Arino Yaguchi1
1Tokyo Women's Medical University, Critical Care and Emergency Medicine, Tokyo, Japan

Background In Japan, rhs-TM (Recomodulin®, Asahi Kasei Pharma Co., Tokyo) administration has been approved to treat disseminated intravascular coagulation (DIC) in adults since May 2008. Although thrombomodulin is one of components of the protein C anticoagulant pathway, it also has known anti-inflammatory activities to inhibit activated kinases and NFκB responses in endothelium. In the previous study, we reported rhs-TM might have a role of anti-inflammation in severe sepsis. The purpose of the present study is to demonstrate how rhs-TM affects in sepsis with DIC.

Materials and Methods Five severe septic patients (3 women, 2 men; age range 45-82 years) with rhs-TM therapy for DIC in our ICU were investigated. In effect, rhs-TM therapy consists of 380 U/kg intravenously every 24 hours for 6 days. Serum TM, protein C (PC), protein S (PS), endothelial protein C receptor (EPCR), antithrombin III (ATIII) activity, plasminogen activator inhibitor-1 (PAI-1), WBC, CRP, IL-6, C3 (Complement 3) were measured daily from the start of rhs-TM therapy until they finished the therapy. SOFA score and DIC score were used to assess for the severity, TM, EPCR, IL-6, and PS were measured by enzyme-linked immunosorbent assay (ELISA). PAI-1 and PC was measured by latex photometric immunoassay. C3 was measured by turbidimetric immunoassay. Data were analyzed by Kruskal-Wallis test and Mann-Whitney U test. Pearson's correlation coefficient and Spearman's correlation coefficient by rank test were used for correlations. A P<0.05 was considered as statistically significant.

Results There were 3 survivors and 2 nonsurvivors. No side effects of rhs-TM occurred. TM values were statistically significantly increased (3.7 vs 19.4 ng/ml, P = 0.01) and CRP values were significantly decreased (208 vs 7.4 mg/dL, P = 0.005) after rhs-TM therapy compared with before that therapy. There were no significant differences in other values between before and after rhs-TM therapy. TM values correlated with ATIII activity (r = 0.3), CRP (r = 0.48), PAI-1 (r = 0.46), and PS (r = 0.34). There were no statistically relationships between TM and EPCR, PC, IL-6, WBC, C3. SOFA score and DIC score were improved but did not reach to statistical significances.

Conclusions This study showed a close association could exist between TM and CRP; PAI-1. There is a possibility rhs-TM may also have an efficacy for anti-inflammation not only for DIC in sepsis.

References

P71 Septic complications in hematological ICU: Epidemiology and antimicrobial resistance
Vladimir Pavlov1, Oleg Goloschapov1, Mayya Toropova1, Boris Afnasyev1
1Pavlov State Medical University, Bone Marrow Transplantation, Saint Petersburg, Russian Federation

Background Sepsis is among the main causes of death in oncohematological patients, receiving chemotherapy and immunosuppressive therapy and hematopoietic stem cell transplantation (HSCT). There are some epidemiological, clinical, and laboratory features that complicate its diagnosis in this group of patients. Unfortunately, this problem is still not well explored. The aim of our study was to characterize the epidemiology of sepsis and antimicrobial resistance in patients after intensive chemotherapy and HSCT.

Materials and Methods Microbiological cultures were sampled from 52 patients admitted to the specialized ICU clinic for hematology and transplantology with confirmed diagnosis of sepsis (17.3%), severe sepsis (38.5%), and septic shock (44.2%). Both children and adults were included (range 0.5-76 years, median age 14 years). In 27 (52%) cases patients received conventional chemotherapy; in 10 (19%) cases HSCT, and in 13 (25%) cases immunosuppressive treatment of “graft-vs-host” disease after HSCT. Two (4%) patients did not receive any specific therapy (1 with severe combined immune deficiency and 1 with myelodysplastic syndrome). Microbiological analysis antibiotic resistance detection were provided using BacT/Alert® microbial detection system and Vitek® 2 automated identification susceptibility system.

Results Microbiological confirmation of sepsis was received in 39 (75%) patients. The most common organisms which cause septic complications were Gram-negative bacteria - 60.86% (K. pneumonieae - 30.43%, P aeruginosa - 13.04%, E. coli - 6.52%, other - 10.87%). Gram-positive cocci were identified in 26.09% (S. epidermidis - 8.7%, Entereococcus spp. - 6.52%, other - 10.87%). In 13.05% fungal sepsis was diagnosed (Candida spp. - 8.7%, Aspergillus spp. - 4.3%). Antibiotic resistance analysis shows high efficacy of carbapenems and cefepime/sulbactam in cases of K. pneumonieae infection, 100% sensitivity of P. aeruginosa to colimycin and piperacillin/tazobactam, but low activity of aminoglycosides and third generation cephalosporins. Only 1 case (out of 3) of vancomycin-resistant Entereococcus and no cases of methicillin-resistant S. aureus were detected.

Conclusions Our study shows the emerging role of Gram-negative bacteria with increasing rates of multiresistant strains in the etiology of sepsis in patients receiving chemotherapy, HSCT, or immunosuppressive treatment. Analysis of antibiotic sensitivity shows that the principles of empiric antimicrobial agents use in hematological ICU should not be the same as in hematology or transplantology wards.

P72 Assessment of physiotherapy on ICU and effects of physiotherapeutic interventions on outcome of critically ill patients
Maik Sossdorf1, Gordon P. Otto1, Katja Menge1, Ralf A. Claus1, Wolfgang Loesch1, Matthias Kohl1, Konrad Reinhart1, Michael Bauer1
1Jena University Hospital, Anaesthesiology and Intensive Care Medicine, Jena, Germany

Background Physiotherapists are members of the interdisciplinary team providing care for critically ill patients. So far, there are only very few studies indicating a significant benefit of physiotherapy on clinical outcome of ICU patients. In this study we investigated (i) the implementation of physiotherapy on ICU and (ii) the effect of physiotherapeutic interventions on outcome of patients with severe sepsis or septic shock.

Methods Retrospective statistical analysis of critically ill patients admitted to Jena University Hospital from January 2006 to December 2009. Data were extracted from the patient data management system (COPRA) and analyzed for various clinical variables and the frequency of physiotherapeutic measures. Frequency of physiotherapy is given as relative measures calculated as the number of treatments per day of ICU stay and is given in percentages. Cox proportional hazards regression analysis was performed to analyze effects of physiotherapeutic treatment on outcome of septic patients (in-hospital mortality). Hazard ratio was adjusted to established risk factors such as age, gender, disease severity scores, mechanical ventilation, comorbidity, etc.

Results In total 16,042 critically ill patients admitted to the ICU were analyzed. A total of 999 patients (mean age 64.1 ± 14.2 years; mean length of ICU stay 17.2 ± 17.5 days) developed severe sepsis or septic shock (mean APACHE II score at admission 16.8 ± 11). Only 77% of these patients received physiotherapy with a relative therapeutic treatment of 42%. Cox regression analysis indicated a highly significant benefit of physiotherapeutic interventions on survival of septic patients (Table 1; P<0.0001).

Conclusions The data indicate that intensive physiotherapy may significantly increase survival of patients with severe sepsis or septic shock. Furthermore it was found that physiotherapy is not regularly applied to all ICU patients, physiotherapists rarely treat sedated patients, and there is a lack in communication among physicians, nurses, and physical therapists. Prospective studies are urgently needed to confirm the benefit of physiotherapy on critically ill patients.
Table 1

<table>
<thead>
<tr>
<th>Quartiles of relative physical/therapeutic interventions</th>
<th>Hazard ratio (risk of death)</th>
<th>95%-Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td><9%</td>
<td>9.85</td>
<td>5.53–17.55</td>
</tr>
<tr>
<td>9–39%</td>
<td>3.67</td>
<td>3.67–10.04</td>
</tr>
<tr>
<td>39–67%</td>
<td>1.45</td>
<td>1.45–4.06</td>
</tr>
</tbody>
</table>

P73 Clinical peculiarities of Gram-positive sepsis
Nino Rukhadze 1,2, Mariam Giauri 1, Marine Kanashvili 1, Marina Mamulashvili 1, Tamar Bareladze 6, Elene Pachkoria 1, Bedzina Kanashvili 1
1Bilisi State Medical University, Bilisi, Georgia, 2Bilisi Antisepsis Centre, Bilisi, Georgia

Introduction Sepsis as a disease with various clinical manifestations is an actual problem of modern medicine, especially for specialists of infectious diseases like surgeons, gynecologists, and stomatologists. Its polymorphism depends on various casual agents and the character of microbes. The aim of our research was to study clinical parameters in cases with Gram-positive bacterial sepsis.

Materials and Methods The investigation included 79 patients, 29 female (26.7%) and 50 male (63.3%), aged 16–65. All diagnoses were confirmed by: 1. positive hemoculture (Staphylococcus aureus, 41 [51.9%], S. epidermidis, 12 [15%], other Gram-positive cocci, 7 [8.9%), serologically, 19 [24%]); and 2. echocopy.

Results Among the investigation patients, 15% (12) were drug abusers. In 27 (34.2%) cases endocarditis was revealed. In 56 (70.9%) cases clinical manifestation of the disease was acute with high fever 39-40°C, chills, tachypnoea (26-34 min.), and respiratory insufficiency. Vegetation like bacterial damage of the tricuspid valves was revealed in every drug abuser patient. The rest of the patients revealed mitral and aortic valve. Onset of the disease with severe destructive pneumonia confirmed by radiological investigations was revealed in 59 (74.7%) cases; 14 (17.7%) patients were placed in the department of intensive therapy because of worsened hemodynamic and respiratory failure. The mechanical ventilation of lungs was required in 4 (5%) cases. All patients had hepatomegaly, but 36 (45.6%) had splenomegaly. At the onset of the disease 7 (8.9%) patients with septic endocarditis had low-grade fever. Three to 4 weeks later they developed hectic temperature and chills. Four patients died because of thromboembolic complications (Machabli syndrome) and acute heart failure. Three patients with septic endocarditis recovered by conservative treatment (6-8 months): antibacterial and heparinotherapy. Every patient with acute sepsis was treated with eutropic treatment (10 days of apyrexy period), and a lower dose of heparin, 10,000 units because of underlying disease (gastric ulcer) was administered to the 4 patients that died. Complete blood count in 3 patients (3.8%) revealed leucopenia, the rest have leucocytosis and high ECR, left side shifting of leucocyte formula. According to the coagulogram all patients revealed hypercoagulation and a high level of fibrinogen; 72 (91%) had moderately increased prothrombin and sharply positive ethanol test, 7, slightly positive.

Conclusions Thus, common clinical manifestation of sepsis and septic endocarditis is destructive pneumonia with hematopile syndrome, high fever with chills, leucocytosis in blood count (in severe and fullmiant forms, leucopenia) increased ECR, disturbance of coagulation (increased fibrinogen). The outcome of the disease depends on an eutropic treatment as one of the important components of therapy such as the indirect anticoagulant, heparin.

P74 Detection of Epstein-Barr Virus in Iranian patients with multiple sclerosis
Nourollah Ramroodi*
1Neurology Science, Department of Neurology, Zahedan, Iran (Islamic Republic of)

Background Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is believed to have both genetic and environmental components. Although no single virus has proven to cause MS, several different viruses, including retroviruses and herpesvirus, have been implicated in MS pathogenesis.

Aim This study was conducted to evaluate the presence of Epstein-Barr virus (EBV) infection in Iranian patients with MS.

Material and Method In a prospective case-control study, we studied 78 patients with MS and 123 healthy controls for viral DNA detection and antibody assay. DNA extracted from serum and real-time PCR was employed to the detection of the EBV genome. The levels of anti EBV IgG were measured in samples by enzyme-linked immunosorbent assays (ELISA) in Dr Ahmad’s medical laboratory (P<0.05).

Results We found EBV DNA in the 58% and 31% of patients and healthy controls, respectively. Furthermore, higher levels of anti EBV IgG were detected in patients in contrast with healthy controls. Moreover, genome copy number of EBV was significantly increased in patients.

Conclusion Results showed significant correlation between EBV DNA and development of MS in selected patients. These results support the hypothesis that EBV may contribute to the MS disease thought to establish active infection process and induce immune response. The role of EBV in the modulation of MS requires further study.

P75 Comparison of different modes of CVVHF in therapy of septic shock
Vladimir Kulabukhov 1, Andrey Chizhov 1, Anton Kudryavcev 1, Artem Kleuzovich 1, Konstantin Koreshkov 1
1National Medical Surgical Center named by N.I. Pirogov, Department of Anesthesiology and Intensive Care, Purulent-Septic Surgery Clinic, Moscow, Russian Federation

Background Sepsis is developed mainly during hospital stays (eg, in intensive care patients) and remains a therapeutic dilemma despite advances in drug therapy and intensive care. Sepsis is a major cause of morbidity and mortality in intensive care clinics and the incidence is continuously increasing. In recent years, a component of intensive therapy of severe sepsis has used methods of hemofiltration. However, there remains the unresolved question of the mode and extent of substitution therapy. The aim of our study was to determine the effect of normal and high volume hemofiltration on central hemodynamics and gas exchange in patients with septic shock.

Materials and Methods The study included 41 patients randomized into 2 groups. The 1st group included 21 patients, age 60.1 ± 6.2 years. CVVHF was conducted at a volume of substitution of 35 mL / kg / hours. The 2nd group included 22 patients, ages 58.4 ± 4.8 years. CVVHF was conducted at a volume of substitution of 70 mL / kg / hours. within 12 hours, then at a rate of substitution of 35 mL / kg / hours.

Clinical efficacy was assessed by parameters: CI, SVRI, APMean, ELWI, PAO2/FIO2, IOD2, IERO2, PCT, SOFA, lactate, and vasopressor (if % from baseline). Stages: I - before treatment (baseline); II - within 12 hours from the beginning; III- after 24 hours from the beginning. Hemodynamics were obtained by thermomodulation (FICCO technology). Both groups in the study received standard therapy (Surviving Sepsis Campaign International Guidelines 2008).
Table (abstract P75).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>I stage</th>
<th>II stage</th>
<th>III stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-st group</td>
<td>2-nd group</td>
<td>1-st group</td>
</tr>
<tr>
<td>CI (l/min/m²)</td>
<td>4.1 ± 0.5</td>
<td>4.5 ± 0.3</td>
<td>4.9 ± 0.2</td>
</tr>
<tr>
<td>AP (mmHg)</td>
<td>49.3 ± 12.3</td>
<td>51.7 ± 9.8</td>
<td>61.2 ± 10.1</td>
</tr>
<tr>
<td>SVRI (dyn*sec/cm⁵/m²)</td>
<td>780 ± 24</td>
<td>808 ± 26</td>
<td>910 ± 13</td>
</tr>
<tr>
<td>ELWI (ml/kg)</td>
<td>12.1 ± 0.8</td>
<td>12.8 ± 0.2</td>
<td>10.5 ± 1.3</td>
</tr>
<tr>
<td>PaO2/FIO2</td>
<td>124 ± 14</td>
<td>130 ± 17</td>
<td>166 ± 10</td>
</tr>
<tr>
<td>DO2 (ml/min/m²)</td>
<td>270 ± 24</td>
<td>282 ± 19</td>
<td>370 ± 20</td>
</tr>
<tr>
<td>ERO2 (%)</td>
<td>18 ± 1</td>
<td>17 ± 2</td>
<td>20 ± 2</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>5.6 ± 1.2</td>
<td>5.9 ± 2.0</td>
<td>4.2 ± 1.1</td>
</tr>
<tr>
<td>PCT (ng/ml)</td>
<td>18.2 ± 3.4</td>
<td>17.8 ± 2.8</td>
<td>13.3 ± 2.2</td>
</tr>
<tr>
<td>Vasopressor (% from baseline)</td>
<td>0</td>
<td>0</td>
<td>32.1 ± 4.9</td>
</tr>
<tr>
<td>SOFA</td>
<td>18 ± 1</td>
<td>18 ± 1.5</td>
<td>14 ± 1.8</td>
</tr>
</tbody>
</table>

Results Hemodynamics, pulmonary oxygenation, oxygen transport, tissue perfusion, and vasopressor dose are presented in Table 1. In both groups a statistically significant reduction in vasopressor dose, improvement in lung oxygenation, increased I/D ratio, normalization IERO2, reducing ELWI and lactate were revealed. The CI levels were not significantly changed.

Conclusion The regimen of high volume CVVHF at the beginning of extracorporeal treatment is more effective in the treatment of septic shock resulting from rapid correction of violations in the system of oxygen transport and tissue perfusion.

P76 Withdrawn

P77 Complement inhibition decreases the procoagulant response and provides organ protection in a baboon model of E. coli sepsis

Robert Silesi-Mansiat¹, Hua Zhu¹, Narcis I. Popescu ², Glenn Peet³, Georgia Sfyroera³, Paola Magoti³, Lacrimioara Ianciu³, Cristina Lupu¹, Tom E. Mollnes ¹, ³, Fletcher B. Taylor ², ³, Gary Kinasewitz⁴ and John D. Lambris⁵, Florea Lupu ², ³

¹Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; ²Department of Internal Medicine, Pulmonary and Critical Care Division, Oklahoma University Health Sciences Center, Oklahoma City, OK; ³Institute of Immunology, Rikshospitalet University Hospital and University of Oslo, and ⁴Research Laboratory, Nordland Hospital and University of Trondheim, Norway; ⁵Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; ⁶Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK.

Introduction Severe sepsis leads to massive activation of coagulation and complement cascades that could contribute to multiple organ failure (MOF) and death.

Materials and Methods To investigate the role of the complement and its cross-talk with the hemostatic system in the pathophysiology and therapeutics of sepsis, we have used a potent inhibitor (compstatin) administered early (TO to T+48 hrs) or late (T+5 to T+11 hrs) post E. coli challenge in a baboon model of sepsis-induced MOF.

Results Both compstatin treatment regimens inhibited plasma complement activity and TCC levels and significantly inhibited MBL, C3b and C5b9 deposition in the kidney, suggesting decreased endothelial injury and IR induced nephrotoxicity. Moreover, compstatin treatment protected against shedding from the endothelial surface of two major negative regulators of complement function, CD55 and CD59, without significantly affecting the mRNA expression of these proteins. Compstatin treatment reduced sepsis-induced leukocytosis and thrombocytopenia and lowered the accumulation of macrophages and platelets in lungs and kidneys, as well as decreased C5b9 deposition on aggregated platelets detected in these organs. Compstatin treatment significantly reduced the coagulopathic response as reflected by decreased fibrinogen consumption, FDP and APTT values, downregulated tissue factor and PAI-1 expression and better preserved TFPI and thrombomodulin on the endothelial surface. In parallel, the plasma levels of sPselectin and sTM were decreased, suggesting diminished endothelial cell injury and platelet activation in compstatin treated animals. Compstatin infusion also improved cardiac function and the biochemical markers of kidney (creatinine) and liver (ALD, ALT and AST) injury. Inhibition of complement decreased the release of cytokine IL-6 and the chemotaxon eotaxin. Histological analysis of vital organs collected from animals euthanized after 24 hrs confirmed that compstatin provided substantial organ-protection. Differently from the non-treated group, compstatin treated animals showed no obvious signs of thrombosis or capillary leak in the lungs, no or less tubular necrosis and glomerular thrombosis in the kidneys, lack of hepatocyte vacuolization and liver degeneration, less leukocyte infiltration in the lung, liver adrenals and spleen, and decreased cell death in adrenals and spleen, all consistent with attenuated organ injury.

Conclusion We conclude that complement-coagulation interplay contributes to the progression of severe sepsis and blocking the harmful effects of complement activation products, especially during the organ failure stage of severe sepsis is a potentially important therapeutic strategy.

Complement
Sepsis
Non-human primates

P78 A new role of the alternative complement activation pathway for innate host defense during sepsis

Katja Dahlke¹, Christiane D. Wranz², Oliver Sommerfeld³, Maik Sossdorf⁴, Svea Sachse⁵, Ralf A. Claus⁵, Konrad Reinhart⁵, Michael Bauer⁵, Niels C. Riedemann⁵

¹Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany; ²Institute for Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; ³Department of Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany.

Introduction It is well known that lack of complement activation leads to compromised survival during sepsis. The alternative pathway has been reported to exert an amplifying function for overall complement activation in other models of inflammation such as ischemia reperfusion but its contribution to the innate host response in sepsis is largely unknown. From a biological point of view, the concept of redundant/amplified complement activation appears to be not very convincing within the setting of innate host immune responses.

Materials and Methods To investigate the role of the complement and its cross-talk with the hemostatic system in the pathophysiology and therapeutics of sepsis, we have used a potent inhibitor (compstatin) administered early (TO to T+48 hrs) or late (T+5 to T+11 hrs) post E. coli challenge in a baboon model of sepsis-induced MOF.

Results Both compstatin treatment regimens inhibited plasma complement activity and TCC levels and significantly inhibited MBL, C3b and C5b9 deposition in the kidney, suggesting decreased endothelial injury and IR induced nephrotoxicity. Moreover, compstatin treatment protected against shedding from the endothelial surface of two major negative regulators of complement function, CD55 and CD59, without significantly affecting the mRNA expression of these proteins. Compstatin treatment reduced sepsis-induced leukocytosis and thrombocytopenia and lowered the accumulation of macrophages and platelets in lungs and kidneys, as well as decreased C5b9 deposition on aggregated platelets detected in these organs. Compstatin treatment significantly reduced the coagulopathic response as reflected by decreased fibrinogen consumption, FDP and APTT values, downregulated tissue factor and PAI-1 expression and better preserved TFPI and thrombomodulin on the endothelial surface. In parallel, the plasma levels of sPselectin and sTM were decreased, suggesting diminished endothelial cell injury and platelet activation in compstatin treated animals. Compstatin infusion also improved cardiac function and the biochemical markers of kidney (creatinine) and liver (ALD, ALT and AST) injury. Inhibition of complement decreased the release of cytokine IL-6 and the chemotaxon eotaxin. Histological analysis of vital organs collected from animals euthanized after 24 hrs confirmed that compstatin provided substantial organ-protection. Differently from the non-treated group, compstatin treated animals showed no obvious signs of thrombosis or capillary leak in the lungs, no or less tubular necrosis and glomerular thrombosis in the kidneys, lack of hepatocyte vacuolization and liver degeneration, less leukocyte infiltration in the lung, liver adrenals and spleen, and decreased cell death in adrenals and spleen, all consistent with attenuated organ injury.

Conclusion We conclude that complement-coagulation interplay contributes to the progression of severe sepsis and blocking the harmful effects of complement activation products, especially during the organ failure stage of severe sepsis is a potentially important therapeutic strategy.

Complement
Sepsis
Non-human primates
Methods We therefore investigated the contribution of the alternative pathway using factor D knockout mice (fD/-) and compared crucial defense mechanisms in these mice during sepsis to mice compromised in classical complement pathway activation (C1q/-).

Results Our results indeed demonstrated striking differences. Both knockout mice strains showed a significantly reduced survival when compared to control mice but death occurred for distinct different reasons: fD/- mice demonstrated fully compensated bacterial clearance when compared to control mice, while C1q/- mice rapidly died being overwhelmed by bacterial growth. Despite normal bacterial clearance, fD/- mice demonstrated uncontrolled inflammatory cytokine generation and neutrophil recruitment into lungs and the blood when compared to control mice and C1q/- mice. As one possible mechanism, we identified a strongly increased NfkB activation capacity in neutrophils from fD/- mice, suggesting a potential direct or indirect controlling function of factor D for crucial inflammatory host responses.

Conclusion Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared to the classical pathway.
Author Index for Meeting Abstracts

Abe, M, P70
Abreu, M, P34
Acht, B, P47
Afanasiev, B, P71
Alauzet, C, P43
Alvizatos, P, P30
Alves, C, P51
Alves-Filho, JC, P23, P53
Anisimova, N, P52
Araújo, C, P26
Armaganidis, A, P31
Arnold, R, P24
Assenzio, B, P6
Assreuy, J, P34
Armaganidis, A, P59
Aunis, D, P32, P37
Auxiliadora-Martins, M, P23
Ayala, A, P22
Bach, C, P37
Bajaj, P, P41
Bareladze, T, P69, P73
Bareño-Silva, J, P1
Basile-Filho, A, P23
Bassaris, H, P31
Bauer, M, P39, P44, P45, P72, P78
Bayer, O, P39
Birkenheuer, A, P35
Blaess, MF, P45
Blefari, V, P54
Bockmeyer, CL, P45
Bollaert, P-E, P43
Bouazza, Y, P43
Bozza, P, P26
Branco, LGS, P15, P16
Brandon, R, P9
Bunck, AC, P47
Butler, H, P3
Camilo Jaramillo-Bustamante, J, P1
Campbell, C, P26
Campos, E, P54
Cardoso, F, P46
Carnio, EC, P10, P15
Celes, MR, P34, P54
Chaidaroglou, A, P30
Chase, JG, P13
Chincharadze, N, P65
Chinikar, S, P56
Chizhov, A, P28, P75
Cirkovic, I, P66
Claus, RA, P44, P45, P47, P72, P78
Cola, D, P15
Conradi, F, P45
Constantino, L, P46
Corrêa, T, P34
Cunha, F, P34, P54
Cunha, TM, P53
Daabo, H, P18
Dahike, K, P78
Dal Secco, D, P34
Dal-Pizzol, F, P46
Dang, R, P67
Daraselia, M, P65, P68
De Freitas Caires, N, P42, P55
De Moraes, IM, P26
de Queiroz Cunha, F, P23, P53
de Souza, CT, P46
Degiannis, D, P30
Delehedde, M, P42, P55
Dellinger, RP, P24
Deng, X, P17
Derive, M, P43
Diamantakis, A, P31
Dimitriadou, E, P59
Dimopoulos, I, P31
Dimopoulos, G, P59
Dorer, MJ, P47
Douraghi, M, P7
Elmér, E, P11
Enkhaaatar, P, P21, P48, P49
Essien, BE, P3
Estevam, P, P26
Felisberto, F, P46
Fernández, C, P64
Fernández-Laverde, M, P1
Fevre, C, P50
Foca, A, P27
Footer, BW, P21, P48, P49
Frantzeskaki, F, P59
Friberg, H, P11
Frost, R, P20
Furusako, S, P19
Gadson, M, P17
Galán-Sánchez, F, P64
Gallagher, J, P18
Garcia-Martos, P, P64
García-Tapia, A, P64
Garg, N, P36
Gartzonika, C, P14
Gazzinelli, R, P53
Ghazi, SM, P56
Gibot, S, P43
Gigauri, M, P60, P65, P69, P73
Gigauri, N, P60, P69
Gil de Sola, F, P64
Gnaiger, E, P11
Gogeliani, M, P68
Goginashvili, E, P60
Gogos, C, P57
Goloschapov, O, P71
Gonçalves-de-Albuquerque, C, P26
Gonzalez-Ruiz, A, P20
Gouzi, P, P30
Gouziouta, A, P30
Grigoriu, B, P55
Gromova, E, P52
Guignant, C, P22
Gupta, M, P67
Haas, P-J, P50
Hansson, MJ, P11
Harada, T, P70
Hartog, CS, P2, P39
Hekmat, K, P39
Herbrecht, J-E, P37
Hiramatsu, M, P12
Hirose, J, P19
Hosaka, Y, P19
Hupe, DC, P47
Ikeda, T, P12
Ikeda, K, P12
Ivančić, L, P77
Jan, B, P17
Javakhadze, M, P65, P68
Javeri, Y, P36
Jones, A, P24
Juneja, D, P36, P41, P67
Kabisch, B, P39
Kalilinteri, A, P14
Kanashvili, B, P73
Kanashvili, M, P73
Kapsali, E, P14
Katsoula, I, P14
Khanes, G, P62, P63
Kherouf, H, P22
Kinasewitz, G, P77
Kiselevsky, M, P52
Kleuzovich, A, P28, P75
Kohl, M, P2, P39, P72
Kopterides, P, P31
Korhonen, JT, P38
Kotanidou, A, P31
Kotiw, M, P3
Kudryavtsev, A, P28
Kudryavcev, A, P75
Kulabukhov, V, P28, P75
Kumar, V, P4
Kuznetzova, L, P52
Kyriazopoulou, V, P57
Lahesmaa, R, P38
Lambris, JD, P77
Lassalle, P, P42, P55
Lavaux, T, P32, P37 Lee, D, P13
Lemmi, J, P44
Leonidou, L, P57
Lepape, A, P22
Levidiotou, S, P14
Levy, M, P35
Levy, B, P43
Li, J, P35
Liberato, MC, P27
Lin, K, P8
Lin, J, P13
Linge, HM, P8, P21, P48, P49
Lipman, J, P9
Loesche, W, P72
Löschke, W, P45
Lupu, C, P77
Lupu, F, P77
Magnn, F, P26
Magotti, P, P77
Malvestio, L, P54
Mamulashvili, G, P69
Mamulashvili, M, P69, P73
Maniatis, N, P31
Manoli, E, P30
Mapril, J, P51
Mamulashvili, M, P69, P73
Mamulashvili, M, P69, P73
Maniatis, N, P31
Manoli, E, P30
Mapril, J, P51
Marin, P, P64
Marin-Agudelo, A, P1
Martin, EL, P6
Massin, F, P43
Matera, G, P27
Mathieu, D, P42, P55
Matveeva, V, P29
Mavridis, A, P14
McLean, A, P9
Menge, K, P72
Metz-Boutique, MH, P32, P37
Mgaloblishvili, E, P68
Miller, EJ, P8, P21, P48, P49
Mina, F, P46
Mollnes, TE, P77
Monneret, G, P22
Moradi, M, P56
Moreira, JCF, P46
Moroi, R, P70
Morota, S, P11
Mouzaki, A, P57
Nagai, R, P70
Naitou, K, P19
Nakamura, M, P19
Nakos, G, P14
Namiki, M, P70
Nasa, P, P67
Nascimento, DC, P23, P53
Neto, HCF, P26
Newsham, H, P20
Nguyen, T, P9
Nikitas, N, P31
Nordone, S, P35
Ochani, K, P8
Oliveira, AM, P34
Olivon, V, P34
Orfanos, S, P31
Otashvili, M, P60, P69
Otto, GP, P44, P47, P72
Pachkoria, E, P73
Pais, C, P51
Palad, A, P55
Pantou, M, P30
Papapetrou, E, P14
Paramythiotou, E, P59
Parente, JD, P13
Parish, DM, P21, P48, P49
Parkhomenko, L, P63
Parmar, S, P20
Parmentier, E, P42, P55
Pascoe, R, P9
Pastré, J, P42, P55
Peer, G, P77
Pedroso, A, P51
Petroniolo, F, P46
Popescu, NI, P77
Prado, C, P54
Priavali, E, P14
Price, G, P9
Pruett, S, P17
Pulicari, MC, P27
Puolakkainen, M, P38
Quirino, A, P27
Radfar, M, P7
Rameetti, L, P27
Ramroodi, N, P74
Ranganath, L, P18
Ranieri, VM, P6
Recknagel, P, P45
Rehberg, S, P21, P48, P49
Riedemann, N, P39, P72, P78
Ringstad, J, P25
Ritter, C, P46
Rodríguez-Iglesias, R, P64
Roesler, R, P46
Rossi, M, P34, P54
Rostami, MN, P7
Rukhadze, N, P73
Sachse, S, P78
Sakkas, H, P14
Sanadgol, N, P40
Saroglou, G, P30
Schally, AV, P46
Schentag, JJ, P21, P48, P49
Scherpereel, A, P42, P55
Schneider, F, P32, P37
Scholz, S, P44
Schürholz, T, P45
Schwartzmann, G, P46
Schiavon, U, P39
Sfyroera, G, P77
Sfyris, G, P77
Sharma, A, P4
Shaw, GM, P13
Shirakawa, K, P19
Sieber, MW, P45
Silasi-Mansat, R, P77
Silva, A, P26
Simone Saia, R, P10
Simonsen, Ø, P25
Singh, O, P36, P41, P67
Singh, G, P41
Sjövall, F, P11
Sommerfeld, O, P78
Soltandallal, M-M, P7
Sőnega, F, P53
Soriano, RN, P16
Soriano, FG, P46
Sosssdorf, M, P44, P45, P72, P78
Souto, FO, P23, P53
Strack, EL, P46
Strunin, D, P3
Suckert, I, P47
Suda, S, P12
Sutherland, A, P9
Svabic Vlahovic, M, P66
Takeda, M, P70
Takeuchi, T, P19
Tan, W, P17
Tang, B, P9
Taniuchi, H, P12
Taylor, FB, P77
Theodorakopoulou, M, P31, P59
Thomas, M, P9
Toropova, M, P71
Torres-Duenas, D, P54
Traber, LD, P21, P48, P49
Traber, DL, P21, P48, P49
Trvelin, SC, P53
Trzeciak, S, P24
Tsaknis, G, P59
Tsangaris, I, P59
Turato, WM, P23, P53
Urban, P, P47
van Strijp, J, P50
Vassiliadou, D, P31
Vavilov, V, P71
Venet, F, P22
Venter, D, P9
Vrioni, G, P14
Vuolo, F, P46
Welters, I, P18
Wrán, CD, P78
Yaguchi, A, P70
Zeraati, H, P7
Zhang, D, P32
Zhu, H, P77
Zotos, N, P14
Publish your next research article in

CRITICAL CARE
Editor-in-Chief: Jean-Louis Vincent

The online intensive care journal

- Open access
- No color figure charges or length restrictions
- High visibility
- Fast peer-review and publication
- Inclusion in PubMed and PubMed Central

http://ccforum.com
Acknowledgements and Exhibitor Listing

The Members of the Organising Committee would like to express their thanks to the following organisations whose support of this Conference is very valuable indeed in keeping it accessible to a wide range of professionals from across the world.

EXHIBITORS

Please make time to visit the companies who are exhibiting. They will be pleased to see you.

EISAI
Eisai Europe Ltd
European Knowledge Centre, Mosquito Way, Hatfield, Hertfordshire, AL10 9SN, UK
Tel: +44 (0) 845 676 1356 Website : www.eisai.com

MediTheque (Librairie / Bookshop)
88, rue des Moines, F-75017 Paris, France
Tel : +33 (0) 1 42 28 17 35 Fax: +33 (0)1 42 28 21 17
E-mail : meditheque@noos.fr Website : www.meditheque.fr

MAJOR SPONSORS

Gold Sponsor

Silver Sponsor

Bronze Sponsors

Special thanks to CSL Behring for their unrestricted educational grant to support the delegate registrations and travel bursaries for Sepsis 2010.

Special thanks to Merck & Co for their unrestricted educational grant to support the Best Abstract Awards and the production of the Program and Abstract Book.

The Organizing Committee would also like to thank:

- The staff at the Institut Pasteur
- The ISF Executive Director – Elaine Rinicker
- Index Communications Meeting Services for their planning and logistical management of the Symposium
- ANZICS and SRLF for the endorsement of the scientific program
ISF Sponsoring Companies

ISF Funding
The ISF is funded by unrestricted educational grants and donations. If you are interested in supporting the ISF and its educational activities around the world, please contact Elaine Rinicker, ISF Executive Director Tel: +1 813 235 9813, or by email at elaine@sepsisforum.org

ISF received unrestricted educational grants from the following companies during 2010. The ISF also receives donations from the public.

Agennix AG
www.agennix.com

AstraZeneca Pharmaceuticals
www.astrazeneca.com

bioMérieux SA
www.biomerieux.com

B.R.A.H.M.S.
www.brahms.de

Eli Lilly Corp
www.lilly.com

Eisai INC and Eisai Medical Research INC
www.eisai.com

Roche Diagnostics
www.molecular.roche.com

Siemens Healthcare Diagnostics
www.siemens.com/diagnostics

Spectral Diagnostics INC
www.spectraldx.com

Toray Medical Co.LTD.
Notes
Notes
Notes
THE SYSTEMS BIOLOGY OF SEPSIS, GENOMICS AND BEYOND

Co-chairs:
Stephen Lowry, USA
and Steven Opal, USA

21-23 JUNE 2011
ROCKEFELLER UNIVERSITY
NEW YORK USA
Sepsis 2011 will precede the Chinese Society of Critical Care Medicine annual congress on 29-30 October.

27-28 October 2011

Abstract deadline 30 July 2011

For more information please visit www.sepsisforum.org